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4 OLIVIER BRINON AND BRIAN CONRAD

Part I. First steps in p-adic Hodge theory
1. MOTIVATION

1.1. Tate modules. Let E be an elliptic curve over a number field F', and fix an algebraic
closure F'/F and a prime number p. A fundamental arithmetic invariant of E is the Z-rank of
its finitely generated Mordell-Weil group F(F) of rational points over F'. This is conjecturally
encoded in (and most fruitfully studied via) the p-adic representation of G := Gal(F/F)
associated to F. Let us review where this representation comes from, as well as some of its
interesting properties.

For each n > 1 we can choose an isomorphism of abelian groups

tpn t E(F)p") = (2/p"Z)*

in which G acts on the left side through the finite Galois group quotient Gal(F'(E[p"])/F)
associated to the field generated by coordinates of p"-torsion points of £/. By means of ¢g,, we
get a representation of this finite Galois group (and hence of Gr) in GLy(Z/p"Z). As n grows,
the open kernel of this representation shrinks in G. It is best to package this collection of
representations into a single object: we can choose the tg,’s to be compatible with respect
to reduction modulo p-powers on the target and the multiplication map E[p"*!] — E[p"] by
p on the source to get an isomorphism of Z,-modules

T,(E) = lim B(F)[p"] ~ 22
on which G acts through a continuous representation
p: GF — (}LQ(ZP)7

passing to the quotient modulo p™ recovers the representations on torsion points as considered
above.

For any prime g of F we choose an embedding of algebraic closures F E (i.e., we
lift the p-adic place of F to one of F) to get a decomposition subgroup G F, € GF, so we
may restrict p to this subgroup to get a continuous representation p, : Gp, — GLa(Z))
that encodes local information about E at . More specifically, if I, C Gp, denotes the
inertia subgroup and we identify the quotient G, /I, with the Galois group Gy, of the
finite residue field k(p) at p then we say that p,, (or p) is unramified at p if it is trivial on I,
in which case it factors through a continuous representation G,y — GL2(Z,). In such cases
it is natural to ask about the image of the (arithmetic) Frobenius element Frob,, € Gy

that acts on k(p) by x — 2%, where g, := #k(p).

Theorem 1.1.1. If p t p then E has good reduction at o (with associated reduction over k(p)
denoted as E) if and only if p, is unramified at . In such cases, p,(Frob,) acts on T,(E)
with characteristic polynomial X* — ag ,X + q,, where ag, = q,+1 — #E(k(p)) € Z C Z,.

Remark 1.1.2. Observe that ag,, is a rational integer that is independent of the choice of
p (away from p). By Hasse’s theorem, |agy| < 2,/q,. If we had only worked with the
representation p mod p™ on p"-torsion points rather than with the representation p that
encodes all p-power torsion levels at once then we would only obtain ag, mod p™ rather
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than ag, € Z. By the Hasse bound, this sufficies to recover ag , when g, is “small” relative
to p™ (i.e., 4,/q, < p").

It was conjectured by Birch and Swinnerton-Dyer that rankz(FE(F')) is encoded in the
behavior at s = 1 of the Euler product

Lyooa(s, E/F) = [ (1 = apeay® +a}7>) 7"

goodp

this product is only known to make sense for Re(s) > 3/2 in general, but it has been
meromorphically continued to the entire complex plane in many special cases (by work of
Taylor-Wiles and its generalizations). For each p, the G p-representation on T, (E) encodes all
Euler factors at primes p of good reduction away from p by Theorem 1.1.1. For this reason,
the theory of p-adic representations of Galois groups turns out to be a very convenient
framework for studying the arithmetic of L-functions.

Question 1.1.3. Since the notion of good reduction makes sense at p without any reference
to p, it is natural to ask if there is an analogue of Theorem 1.1.1 when p|p.

This question was first answered by Grothendieck using p-divisible groups, and his answer
can be put in a more useful form by means of some deep results in p-adic Hodge theory: the
property of being unramified at g (for p 1 p) winds up being replaced with the property of
being a crystalline representation at o (when p|p). This latter notion will be defined much
later, but for now we wish to indicate why unramifiedness cannot be the right criterion when
@|p. The point is that the determinant character det p, : G, — Z) is infinitely ramified
when p|p. In fact, this character is equal to the p-adic cyclotomic character of F{,, a character
that will be ubiquitous in all that follows. We therefore now recall its definition in general
(and by Example 1.1.5 below this character is infinitely ramified on G, ).

Let F' be a field with a fixed separable closure Fy/F and let p be a prime distinct from
char(F). Let pyn = pyn(Fs) denote the group of p"th roots of unity in FX, and let gy
denote the rising union of these subgroups. The action of G on ji, is given by g(¢) = (X9
for a unique x(g9) € Z;: for ¢ € ppn the exponent x(g) only matters modulo p", and
x(g) mod p™ € (Z/p"Z)* describes the action of g on the finite cyclic group p,n of order p™.
Thus, x mod p™ has open kernel (corresponding to the finite extension F'(j,»)/F) and x is
continuous. We call x the p-adic cyclotomic character of F.

Remark 1.1.4. Strictly speaking we should denote the character x as xr,, but it is permissible
to just write x because p is always understood from context and if F’/F is an extension
(equipped with a compatible embedding Fy — F} of separable closures) then xrpla,, = X

Example 1.1.5. Let F' be the fraction field of a complete discrete valuation ring R with
characteristic 0 and residue characteristic p. Hence, Z, C R, so we may view Qp CF. In
this case F'(py~)/F is infinitely ramified, or in other words x : Gp — Z) has infinite image
on the inertia subgroup Ir C Gp. Indeed, since e := ordp(p) is finite F'(y,») has ramification

degree e, over F' satisfying e, - e > ordq,(u,.)(p) = p" ' (p — 1), so €, — o0.
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1.2. Galois lattices and Galois deformations. Moving away from elliptic curves, we now
consider a wider class of examples of p-adic representations arising from algebraic geometry,
and we shall formulate a variant on Question 1.1.3 in this setting.

Let X be an algebraic scheme over a field F'; the case of smooth projective X is already
very interesting. For a prime p # char(F), the étale cohomology groups H: (X, Z,) are
finitely generated Z,-modules that admit a natural action by Gr = Gal(F,/F) (via pullback-
functoriality of cohomology and the natural Gg-action on X, = X®pF}), and these modules
need not be torsion-free. Hence, the Gr-action on them is not described via matrices in
general, but satisfies a continuity condition in the sense of the following definition.

Definition 1.2.1. Let I' be a profinite group. A continuous representation of I' on a finitely
generated Z,-module A is a Z,[I']-module structure on A such that the action map ' x A — A
is continuous (or, equivalently, such that the I'-action on the finite set A/p"A has open kernel
for all n > 1). These form a category denoted Repy (I'), and Repg (I') is defined similarly.

Ezample 1.2.2. If a Z,[I'l-module A is finite free as a Z,-module then A € Repy (') if and

only if the matrix representation I' — GL,(Z,) defined by a choice of Z,-basis of A is a
continuous map.

Ezample 1.2.3. Let F be a number field and consider the action by Gr on H (XF,, Z,) for a
smooth proper scheme X over F. This turns out to always be a finitely generated Z,-module
whose Gp-action is continuous, but it is generally not a free Z,-module. It is unramified
at all “good reduction” primes g { p of F' (i.e., I, C Gp acts trivially) due to general base
change theorems for étale cohomology. However, if X has good reduction (appropriately
defined) at a prime p|p then this p-adic representation is rarely unramified at p. We would
like a nice property satisfied by this p-adic representation at primes p|p of good reduction for
X, replacing unramifiedness. Such a replacement will be provided by p-adic Hodge theory.

Example 1.2.4. A finite I'-module is a finite abelian group M equipped with a continuous
(left) '-action relative to the discrete topology. (That is, each m € M has an open stabilizer,
so M is just a I'/U-module for some open normal subgroup U C I'.) In case M is a p-group,
this is just an object in Repy (I') with finite Z,-length. A basic example of interest is
E[p™](Fy) for an elliptic curve E over a field F' with p # char(F) and I' = Gal(F/F).

A finite T'-set is a finite set ¥ equipped with a continuous (left) I'-action relative to the
discrete topology. This is just a finite set with an action by I'/U for an open normal subgroup
U CT. A basic example of interest is X (Fj) for a finite F-scheme X, with I' = Gal(F,/F).
The main reason for interest in finite ['-sets is given in Lemma 7.1.10.

Galois representations as in Example 1.2.3 are the source of many interesting representa-
tions, such as those associated to modular forms, and Wiles developed techniques to prove
that various continuous representations p : Gp — GL,(Z,) not initially related to modular
forms in fact arise from them in a specific manner. His technique rests on deforming p; the
simplest instance of a deformation is a continuous representation

p: Grp — GL,(Z,[2])

that recovers p at = 0 and is unramified at all but finitely many primes of F'. A crucial part
of Wiles” method is to understand deformations of p|GFp when p|p, and some of the most
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important recent improvements on Wiles’ method (e.g., in work of Kisin [30], [31]) focus
on precisely such p. For these purposes it is essential to work with Galois representations
having coefficients in Z, or F, as a prelude to considerations with Q,-coefficients. Much of
p-adic Hodge theory focuses on the case of Q,-coefficients, and so we are led to make the
following definition.

Definition 1.2.5. A p-adic representation of a profinite group I is a representation p : I' —
Autq, (V) of I' on a finite-dimensional Q,-vector space V' such that p is continuous (viewing
Autq, (V) as GL,(Q,) upon choosing a basis of V, the choice of which does not matter).
The category of such representations is denoted Repgq, (I').

One source of objects in Repq (I') is scalar extension to Q,, of objects in Repy (I') (see
Exercise 1.4.3). This is essentially the universal example, due to the next lemma.

Lemma 1.2.6. For V' € Repq ('), there exists a I'-stable Zy-lattice A C V (i.e., A is a
finite free Z,-submodule of V and Q, ®z, A ~ V).

Proof. Let p : I' — Autq, (V) be the continuous action map. Choose a Z,-lattice Ay C V.
Since V' = Q,®z, Ao, we naturally have Autz, (Ag) € Autq, (V) and this is an open subgroup.
Hence, the preimage I'y = p~'(Autz,(A)) of this subgroup in I' is open in I'. Such an open
subgroup has finite index since I" is compact, so I'/T'y has a finite set of coset representatives
{~:}. Thus, the finite sum A = ). p(7;)Ao is a Z,-lattice in V', and it is I'-stable since A is
[g-stable and I = [ [ ;. [ |

1.3. Aims of p-adic Hodge theory. In the study of p-adic representations of Gp =
Gal(F/F) for F of finite degree over Q,, it is very convenient in many proofs if we can
pass to the case of an algebraically closed residue field. In practice this amounts to replacing
F with the completion F™» of its maximal unramified extension inside of F' (and replacing
Gp with its inertia subgroup Ip; see Exercise 1.4.4(1) below). Hence, it is convenient to
permit the residue field & to be either finite or algebraically closed, and so allowing perfect
residue fields provides a good degree of generality.

Definition 1.3.1. A p-adic field is a field K of characteristic 0 that is complete with respect
to a fixed discrete valuation that has a perfect residue field k of characteristic p > 0.

Most good properties of p-adic representations of Gk for a p-adic field K will turn out

to be detected on the inertia group [k, so replacing K with K" is a ubiquitious device in
the theory (since I := Gguw = Gz via Exercise 1.4.4(2); note that K" is not complete if
k # k). The goal of p-adic Hodge theory is to identify and study various “good” classes of
p-adic representations of Gi for p-adic fields K, especially motivated by properties of p-adic
representations arising from algebraic geometry over p-adic fields.

The form that this study often takes in practice is the construction of a dictionary that
relates good categories of p-adic representations of Gx to various categories of semilinear
algebraic objects “over K”. By working in terms of semilinear algebra it is often easier
to deform, compute, construct families, etc., than is possible by working solely with Galois
representations. There are two toy examples of this philosophy that are instructive before we
take up the development of the general theory (largely due to Fontaine and his coworkers),
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and we now explain both of these toy examples (which are in fact substantial theories in
their own right).

Ezxample 1.3.2. The theory of Hodge—Tate representations was inspired by Tate’s study of
T,(A) for abelian varieties A with good reduction over p-adic fields, and especially by Tate’s
question as to how the p-adic representation Hj (X%, Qp) := Q,®z, HY, (X%, Z,) arising from
a smooth proper K-scheme X is related to the Hodge cohomology @, ,—n,H? (X, Q% ) x)- This
question concerns finding a p-adic analogue of the classical Hodge decomposition

C ®q H?op(Z(C>v Q) = @ HP(Z’ Q%)
p+q=n
for smooth proper C-schemes Z.
In §2 we will define the notion of a Hodge-Tate representation of Gg, and the linear
algebra category over K that turns out to be related to Hodge—Tate representations of G is
the category Grg ¢ of finite-dimensional graded K-vector spaces (i.e., finite-dimensional K-

vector spaces V' equipped with a direct sum decomposition V' = @,V,, and maps T : V' — V
that are K-linear and satisfy T'(V,)) C V; for all ).

Example 1.3.3. A more subtle class of representations arises from the Fontaine-Wintenberger
theory of norm fields, and gives rise to the notion of an étale p-module that will arise
repeatedly (in various guises) throughout p-adic Hodge theory. The basic setup goes as
follows. Fix a p-adic field K and let K, /K be an infinitely ramified algebraic extension
such that the Galois closure K _/K has Galois group Gal(K/_/K) that is a p-adic Lie group.
The simplest such example is K, = K. = K({p~), in which case K. /K is infinitely
ramified by Example 1.1.5 and the infinite subgroup Gal(K./K) C Z) that is the image of
the continuous p-adic cyclotomic character x : G — Z,; is closed and hence open. (Indeed,
the p-adic logarithm identifies 1 + pZ, with pZ, for odd p and identifies 1 4 4Z, with 4Z,
for p = 2, and every nontrivial closed subgroup of Z, is open.) Another interesting example
that arose in work of Breuil and Kisin is the non-Galois extension K,, = K (7'/?*) generated
by compatible p-power roots of a fixed uniformizer 7 of K, in which case Gal(K/_/K) is an
open subgroup of Z x Z,.

For any K, /K as above, a theorem of Sen ensures that the closed ramification subgroups
of Gal(K! /K) in the upper numbering are of finite index, so in particular K., with its
natural absolute value has residue field &’ that is a finite extension of k. The Fontaine—
Wintenberger theory of norm fields ([24], [51]) provides a remarkable functorial equivalence
between the category of separable algebraic extensions of K, and the category of separable
algebraic extensions of an associated local field E of equicharacteristic p (the “field of norms”
associated to K,/ K). The residue field of E is naturally identified with &', so non-canonically
we have E ~ k'((u)).

The theory of norm fields will be discussed in §13 in a self-contained manner for the special
case when K., = K(py~). Logically the norm field formalism precedes p-adic Hodge theory,
but it is sufficiently intricate in its constructions that without some knowledge of how p-adic
Hodge theory works it is difficult to digest. Fortunately, the main kind of result which we
need from the theory of norm fields can be easily stated and used without knowing its proof:
upon choosing a separable closure of K, the theory of norm fields yields a separable closure



CMI SUMMER SCHOOL NOTES ON p-ADIC HODGE THEORY (PRELIMINARY VERSION) 9

for E and an associated canonical topological isomorphism of the associated absolute Galois
groups

(1.3.1) Gr. ~ Gp.

This is really amazing: the Galois group of an infinitely ramified field of characteristic 0 is
naturally isomorphic to the Galois group of a discretely-valued field of equicharacteristic p.
In §13.4 this will be proved when K = K (pp~); see Theorem 13.4.3. For the general case,
see [51].

Because E has equicharacteristic p, we will see in §3 that the category Repg, (GEg) is equiv-
alent to a category of semilinear algebra objects (over a certain coefficient ring depending on
E) called étale ¢o-modules. This equivalence will provide a concrete illustratration of many
elementary features of the general formalism of p-adic Hodge theory.

If K/K is Galois with Galois group I' then G k-representations can be viewed as G-
representations equipped with an additional “I’-descent structure” that encodes the descent
to a Gg-representation. In this way, (1.3.1) identifies Repy (Gx) with the category of
(¢, T')-modules that consists of étale g-modules endowed with a suitable I-action encoding
the descent of an object in Repy (Gg) = Repg (Grk..) to an object in Repg (Gr). The
category of (¢, I')-modules gives a remarkable and very useful alternative description of the
entire category Repzp(G k) in terms of objects of semilinear algebra. It will be discussed in
§13.

1.4. Exercises.
Ezercise 1.4.1. Let I' be a profinite group and A an object in Repg (I'). Define
G = Autg,(A), G, = Autg, (A/p"A),

so there are natural “reduction” maps G — G, and G,, — G,, whenever n > m.

(1) Show that if A = Z,®Z/pZ then the maps G,, — G| and G — G are not surjective.

(2) Prove that the natural map of groups G — liLnGn is an isomorphism. Use this to
give GG a structure of profinite group. Show that a base of opens around the identity
consists of the ker(G — G,,)’s, and that the kernels ker(G,, — G;) are p-groups
(hint: show p-power torsion to avoid messy counting). Deduce that G contains an
open normal subgroup that is pro-p..

(3) Prove the equivalence of the two definitions given in Definition 1.2.1, and that these
are equivalent to the condition that the map I' — G = Autz,(A) is continuous.

(4) Prove that a continuous map from a pro-¢ group to a pro-p group is trivial when
¢ # p, and deduce by (3) that if I" is pro-¢ then an open subgroup of I' must act
trivially on A; in particular, I' has finite image in Autz (A) in such cases.

FEzercise 1.4.2. Let A be a finitely generated Z,-module equipped with a continuous repre-
sentation by Gp = Gal(F,/F') for the fraction field F' of a complete discrete valuation ring
A. Let P C I be the wild inertia group and inertia group respective. Let p : Gp — Autz, (A)
be the associated homomorphism.

(1) Prove that ker p is closed in G, and let F, be the corresponding fixed field; we call it
the splitting field of p. In case p is the Tate module representation of an elliptic curve
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E over F with char(F') # p, prove that the splitting field of p is the field F(E[p™)
generated by the coordinates of the p-power torsion points.

(2) Let ¢ be the residue characteristic of A. If ¢ # p, prove that the wild inertia group
P acts on A with an open kernel (so p(P) is finite in such cases). Using Tate curves,
show by example that this is not necessarily true for the action of I.

(3) Let F, be the (F-finite) splitting field of ker(p mod p"A). Prove that Fi, = UF,, and
show that p(I) is finite if and only if the ramification degree e(F,/F) is bounded
as n — 00, in which case #p(I) = max, e(F,/F). Deduce that p(I) is infinite if
and only if the valuation on F, is non-discrete; we then say p is infinitely ramified.
Formulate a related criterion for p(P) and wild ramification.

(4) Suppose F'is a number field. Using Exercise 1.4.1, prove that p|p, is trivial for all but
finitely many places v of F', where P, is the wild inertia subgroup of [,,. (Ramakrishna
constructed examples of p that are ramified at infinitely many v.)

Ezercise 1.4.3. For A € Repy (I'), prove that the scalar extension Q,®z, A lies in Repq, (T').
Ezercise 1.4.4. Let K be a p-adic field with residue field k.

(1) Explain why the valuation ring of K is naturally a local extension of Z,, and prove
that [K : Q,] is finite if and only if k is finite.

(2) Prove that every algebraic extension of K admits a unique valuation extending the
one on K, and that the maximal unramified extension K'*/K inside of K (i.e., the
compositum of all finite unramified subextensions over K') is not complete when £ is
not algebraically closed. -

(3) Prove that the completion K0 is naturally a p-adic field with residue field & that
is an algebraic closure of k, and use Krasner’s Lemma to prove that Iy = Ggu

is naturally 1somorphlc to G i as profinite groups. More specifically, prove that

L~ L ®pun K " is an equivalence of of categories from finite extensions of K™ to finite
extensions of Kun , with L ® gun K~ T

2. HODGE-TATE REPRESENTATIONS

From now on, K will always denote a p-adic field (fo_r a fixed prime p) in the sense of
Definition 1.3.1, and we fix a choice of algebraic closure K /K. The Galois group Gal(K/K)

is denoted G, and we write C to denote the completion K of K endowed with its unique
absolute value extending the given absolute value | - | on K. Generally m will denote a
uniformizer of K.

Sometimes we will normalize the absolute value by the requirement that ordg :=log, | - |
on K* (base p logarithm) satisfies ordx (p) = 1, and we also write |- | and ordx to denote the
unique continuous extensions to Cx and Cj respectively; we define ordg(0) = co. When
working with many valuations at once (as will happen in our later study of (¢, I')-modules
in §13) we may write v instead of ordg.

Historically, the first class of “good” p-adic representations of Gy were those of Hodge—
Tate type; this class was discovered by Serre and Tate in their study of p-adic representations
arising from abelian varieties with good reduction over p-adic fields, and in this section we
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will examine this class of representations with the benefit of hindsight provided by subsequent
developments.

The most basic ingredient in the story is the p-adic cyclotomic character from §1.1, which
appears through its twisting action on everything in sight. Hence, before we begin it seems
best to make some remarks on this character. The p-adic Tate module lim fin (K) of the
group GL; over K is a free Z,-module of rank 1 and we shall denote it as Z,(1). This does
not have a canonical basis, and a choice of basis amounts to a choice of compatible system
(Cpn )n>1 of primitive p-power roots of unity (satisfying (;’ i1 = G for alln > 1). The natural
action of G on Z,(1) is given by the Zx-valued p-adic cyclotomic character xy = xx,, from
§1.1, and sometimes it will be convenient to fix a choice of basis of Z,(1) and to thereby
view Z,(1) as Z, endowed with a Gk-action by x.

For any r > 0 define Z,(r) = Z,(1)*" and Z,(—r) = Z,(r)" (linear dual: M"Y =
Homgz, (M, Z,) for any finite free Z,-module M) with the naturally associated G'k-actions
(from functoriality of tensor powers and duality), so upon fixing a basis of Z,(1) we identify
Z,(r) with the Z,-module Z, endowed with the Gk-action x" for all r € Z. If M is an
arbitrary Z,|Gk|-module, we let M(r) = Z,(r) ®z, M with its natural G'g-action, so upon
fixing a basis of Z,(1) this is simply M with the modified Gk-action g.m = x(g)"g(m) for
g € Gg and m € M. Elementary isomorphisms such as (M (r))(r") ~ M (r+r') (with evident
transitivity behavior) for r,7" € Z and (M (r))Y ~ MY (—r) for r € Z and M finite free over
Z, or over a p-adic field will be used without comment.

2.1. Basic properties of Cx. The theory of Hodge—Tate representations will involve study-
ing the Gg-action on Cg ®q, V for a p-adic representation V' of G (where g(c ® v) =
g(c) ® g(v)). Thus, we now discuss two fundamental facts about Cg, the first of which we
will use all the time, and the second of which will play an important role later in the theory
of norm fields in §13.3.

Proposition 2.1.1. The field Cg is algebraically closed.

Proof. By scaling the variable suitably, it suffices to construct roots for monic non-constant
polynomials over O, . Write such a polynomial as

P=X"4+a, X" 4. tay € Oc,[X]

with V > 0. We can make a sequence of degree- N monic polynomials P,, € 0%[X] converging
to P termwise in coefficients. More specifically, for each n > 0 choose

P,=X"+a, X" '+ +an, € Ox[X]

with P — P, € p""0c,.[X]. By monicity, each P, splits over O%; let a,, € 0% be a root of
P,.

Since P,y — P, € pN"0c,.[X], we have P, () € pN"O¢,. for all n. Expanding P, 4
as HiN:o(X — Pin+t1) With roots p;,+1 € O, the product of the N differences a,, — pint1
is divisible by p™", so for some root a,,; of P,.; we must have that a,,; — o, is divisible
by p™. In this way, proceeding by induction on n we have constructed a Cauchy sequence
{a,} in O such that P,(«a,) = 0 for all n. Hence, if a € O¢,. is the limit of the «,’s then
P(a) = 0 by continuity (since P, — P coefficient-wise). |
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Since Gx = Gal(K/K) acts on K by isometries, this action uniquely extends to an action
on the field Cg by isometries, and so identifies G with the isometric automorphism group
of Ck over K. It is then natural to ask if there is a kind of “completed” Galois theory: how

does CI compare with K for a closed subgroup H C Gg? Since G acts by isometries,

CI is a closed subfield of Cg, so it contains the closure of K7 Isit any bigger? For
example, taking H = G, is C?(K larger than K7 By Galois theory we have C?(K NK =K,
so another way to put the question is: are there transcendental invariants? The following
proposition shows that there are none:

Proposition 2.1.2. Let H be a closed subgroup of Gx. Then CE is the completion L of
L=E&" for the valuation v. In particular, if H is an open subgroup of Gy then Ci is the
finite extension K of K, and LNK = L.

Proof. Choose © € CI, so we want to show x is a limit of points in K7 To do this, we
approximation x by algebraic elements and then try to modify the approximating sequence
by using that assumed H-invariance of . Pick a sequence {z,},>0 in K with x,, — x; more
specifically, arrange that v(z — x,) > n for all n. For ¢ € H we have

v(g(en) = an) = v(g(n — @) = (20 — 2)) 2 min(v(g(z, — ))), v(zn — 7)) = v(Ty — ) = 1.

Since x, in K is close to its entire H-orbit (as made precise above), it is natural to
guess that this may be explained by x being essentially as close to an algebraic H-invariant

element. This is indeed true: by [2, Prop. 1], for each n there exists y, € K™ such that
v(z, —yn) = n—p/(p—1)% But z, — z, so we conclude that likewise y, — x. That is, x

is a limit of points in KH, as desired. [ |

2.2. Theorems of Tate—Sen and Faltings. Let X be a smooth proper scheme over a
p-adic field K. Tate discovered in special cases (abelian varieties with good reduction) that
although the p-adic representation spaces H, (X%, Q,) for Gk are mysterious, they become
much simpler after we apply the drastic operation

VWCK@)QP V,

with the Gk-action on Cx ®q, V defined by g(c ® v) = g(c) ® g(v) for c € Cx and v € V.
Before we examine this operation in detail, we introduce the category in which its output
lives.

Definition 2.2.1. A Cg-representation of Gk is a finite-dimensional Cg-vector space W
equipped with a continuous G g-action map Gk x W — W that is semilinear (i.e., g(cw) =
g(c)g(w) for all ¢ € Cx and w € W). The category of such objects (using Cg-linear
G k-equivariant morphisms) is denoted Repg,. (Gk)-

This is a p-adic analogue of the notion of a complex vector space endowed with a conjugate-
linear automorphism. In concrete terms, if we choose a Cg-basis {wy,...,w,} of W then
we may uniquely write g(w;) = >, a;;(g)w; for all j, and p : Gx — Mat,x,(Ck) defined
by g — (ai;j(g)) is a continuous map that satisfies p(1) = id and p(gh) = p(g) - g(p(h)) for
all g,h € Gg. In particular, u takes its values in GL,(Cg) (with g(u(g™")) as inverse to



CMI SUMMER SCHOOL NOTES ON p-ADIC HODGE THEORY (PRELIMINARY VERSION) 13

i1(g)) but beware that u is not a homomorphism in general (due to the semilinearity of the
G i-action).

Ezample 2.2.2. If V' € Repq, (Gk) then W := Cg ®q, V' is an object in Repc, (Gk). We
will be most interested in W that arise in this way, but it clarifies matters at the outset to
work with general W as above.

The category Repg, (Gk) is an abelian category with evident notions of tensor product,
direct sum, and exact sequence. If we are attentive to the semilinearity then we can also
define a reasonable notion of duality: for any W in Repg, (Gk), the dual WV is the usual
Cx-linear dual on which G acts according to the formula (g.£)(w) = g(¢(g~(w))) for all
we W, ¢ e WY, and ¢ € Gg. This formula is rigged to ensure that g.¢/ : W — Cg
is Cg-linear (even though the action of g=! on W is generally not Cg-linear). Since G
acts continuously on W and on Cg, this action on WV is continuous. In concrete terms, if
we choose a basis {w;} of W and describe the Gk-action on W via a continuous function
u o Gg — GL,(Ck) as above Example 2.2.2 then WV endowed with the dual basis is
described by the function g — g(u(g~!)") that is visibly continuous. Habitual constructions
from linear algebra such as the isomorphisms W ~ WYY and WY @ W'’ ~ (W @ W')¥
well as the evaluation morphism W ® WY — Cg are seen to be morphisms in Repg, (Gk).

The following deep result of Faltings answers a question of Tate.

Theorem 2.2.3 (Faltings). Let K be a p-adic field. For smooth proper K-schemes X, there
18 a canonical isomorphism

(2.2.1) Ck ®q, Hit (X7, Qp) = @D (Cr(—q) ©x H'(X, O )

q

in Repg, (Gk), where the Gx-action on the right side is defined through the action on each
Ck(—q) = Cx ®q, Qu(—q). In particular, non-canonically

Ck ®q, HY (X, Qp) = @CK YR

in Repg, (Gk), with hP? = dimy HP(X, Q% ;).

This is a remarkable theorem for two reasons: it says that Cx ®q, Hi (X%, Q,) as a
C-representation space of Gy is a direct sum of extremely simple pieces (the Ck(—q)’s
with suitable multiplicity), and we will see that this isomorphism enables us to recover the
K-vector spaces H"™(X, Q% ) from Cx ®q, H (X7, Qp) by means of operations that make
sense on all objects in Repg, (G ). This is a basic example of a comparison isomorphism
that relates one p-adic cohomology theory to another. (Faltings established a version of
his result without requiring X to be smooth or proper, but then the Hodge cohomology
terms must be replaced with something else.) It is extremely important to keep in mind
(as we shall soon see) that we cannot recover the p-adic representation space HZ (X7, Q,)
from the Hodge cohomologies H" (X, Q% ) in (2.2.1). In general, Cx ®q, V' loses a lot
of information about V. This fact is very fundamental in motivating many of the basic
constructions in p-adic Hodge theory, and it is best illustrated by the following example.
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Ezxample 2.2.4. Let E be an elliptic curve over K with split multiplicative reduction, and
consider the representation space V,(E) = Q, ®z, T,(E) € Repq, (G ). The theory of Tate
curves provides an exact sequence

(2.22) 0 - Q1) = Vy(E) = Q0
that is non-split in Repg (G) for all finite extensions K'/K inside of K.
If we apply K ®q, (-) to (2.2.2) then we get an exact sequence

0— K(1) - K ®q, Vo(E) = K —0

in the category Repw(G) of semilinear representations of G on K-vector spaces. We claim
that this sequence cannot be split in Repz(G). Assume it is split. Since K is the directed
union of finite subextensions K’/K, there would then exist such a K’ over which the splitting
occurs. That is, applying K’ ®q, () to (2.2.2) would give an exact sequence admitting a
G -equivariant K’-linear splitting. Viewing this as a split sequence of K'[|G k/]-modules, we
could apply a Q,-linear projection K’ — Q, that restricts to the identity on Q, C K’ so
as to recover (2.2.2) equipped with a Q,[G/]-linear splitting. But (2.2.2) has no splitting
in Repgq, (Gk), so we have a contradiction. Hence, applying K ®q, (-) to (2.2.2) gives a
non-split sequence in Repw(Gg), as claimed.

This non-splitting over K makes it all the more remarkable that if we instead apply
Ck ®q, () to (2.2.2) then the resulting sequence in Repg, (G ) does (uniquely) split! This
is a special case of the second part of the following fundamental result that pervades all that
follows. It rests on a deep study of the ramification theory of local fields.

Definition 2.2.5. Let I' be a topological group, and M a topological G-module. The con-
tinuous cohomology group H! . (G, M) (often just denoted H'(G, M) by abuse of notation)

cont
is defined using continuous 1-cochains.

Imposing the continuity condition on cycles really does affect the H!, and in many in-
teresting cases (such as with profinite G and discrete G-module M) the associated group
cohomology defined without continuity conditions is of no real interest. Exercise 2.5.2 illus-
trates this. The justification that H. (G, M) is the right concept for the consideration of
exactness properties of G-invariants in topological settings is explained in Exercise 2.5.3.

Ezample 2.2.6. Let 1) : Gg — Z) be a continuous character. We identify Hl,.(Gx, Cx(n))
with the set of isomorphism classes of extensions

(2.2.3) 0—Ckg(n) =W —-Ckg—0

in Repg, (G ) as follows: using the matrix description

(6 3)

of such a W, the homomorphism property for the Gg-action on W says that the upper
right entry function is a 1-cocycle on G with values in Ck(n), and changing the choice of
Ck-linear splitting changes this function by a 1-coboundary. The continuity of the 1-cocycle
says exactly that the G g-action on W is continuous. Changing the choice of Cg-basis of
W that is compatible with the filtration in (2.2.3) changes the 1-cocycle by a 1-coboundary.
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In this way we get a well-defined continuous cohomology class, and the procedure can be
reversed (up to isomorphism of the extension structure (2.2.3) in Repg, (Gk)).

Theorem 2.2.7 (Tate-Sen). For any p-adic field K we have K = C%K (i.e., there are no
transcendental invariants) and Cg(r)¢% =0 forr # 0 (i.e., if v € Cg and g(x) = x(g9) "z
for all g € Gx and some r # 0 then x = 0). Also, H  (Gx,Ck(r)) = 0 if r # 0 and
H! .. (Gk,Ck) is 1-dimensional over K.

More generally, if n : Gk — O} is a continuous character such that n(Gg) is a commu-
tative p-adic Lie group of dimension at most 1 (i.e., n(Gk) is finite or contains Z, as an
open subgroup) and if Ck(n) denotes Cx with the twisted G -action g.c = n(g)g(c) then
H' . (Gk,Ck(n)) = 0 for i = 0,1 when n(Ix) is infinite and these cohomologies are 1-
dimensional over K when n(I) is finite (i.e., when the splitting field of n over K is finitely
ramified).

Theorem 2.2.7 is proved in §14 via a “Tate—Sen formalism”, as we record in Theorem
14.3.4. (There is no circular reasoning; §14 is entirely self-contained.) This result implies
that all exact sequences (2.2.3) are split when (/) is infinite. Moreover, in such cases the
splitting is unique. Indeed, any two splittings Cx = W in Repg, (Gk) differ by an element
of Homgep, () (Cr, Ck (1)), and by chasing the image of 1 € C this Hom-set is identified

with Cg(n)®%. But by the Tate-Sen theorem this vanishes when n(I) is infinite.
The real importance of Theorem 2.2.7 is revealed when we consider an arbitrary W &
Repg, (Gk) admitting an isomorphism as in Faltings’ Theorem 2.2.3:

(2.2.4) W~ P Ck(—q).

Although such a direct sum decomposition is non-canonical in general (in the sense that
the individual lines Cx(—¢q) appearing in the direct sum decomposition are generally not
uniquely determined within W when h, > 1), we shall see that for any such W there is a
canonical decomposition W ~ @,(Ck(—q) @ x W{q}) for a canonically associated K-vector
space W{q} with dimension h,.

Keep in mind that although the Gx-action on any Q,(r) factors through G32, the action
on Ck(r) does not since the Gg-action is not Cg-linear but rather is Cg-semilinear. In
particular, for nonzero W as in (2.2.4) the Gg-action on W does not factor through G32.

Ezample 2.2.8. In (2.2.4) we have WY ~ @, (Cg(—q)“%)hs ~ Kho by the Tate-Sen theo-
rem, so hg = dimx W%, A priori it is not clear that dimg W% should be finite for typical
W € Repg, (Gk). Such finiteness holds in much greater generality, as we shall see, and
the W that arise as in (2.2.4) will be intrinsically characterized in terms of such finiteness
properties.

2.3. Hodge—Tate decomposition. The companion to Theorem 2.2.7 that gets p-adic
Hodge theory off the ground is a certain lemma of Serre and Tate that we now state. For
W € Repg,. (Gk) and g € Z, consider the K-vector space

(2.3.1) W{q} = W(q)% ~ {w e W |g(w) = x(g) % for all g € Gk},
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where the isomorphism rests on a choice of basis of Z,(1). In particular, this isomorphism is
not canonical when ¢ # 0 and W{q} # 0, so W{q} is canonically a K-subspace of W (q) but
it is only non-canonically a K-subspace of W when ¢ # 0 and W{q} # 0. More importantly,
W{q} is not a Cg-subspace of W (q) when it is nonzero. In fact, W{q} contains no Cg-lines,
for if x € W{q} is nonzero and cz lies in W{q} for all ¢ € Ck then g(c) = ¢ for all ¢ € Cg
and all ¢ € Gk, which is absurd since K C Cg.

We have a natural G g-equivariant K-linear multiplication map

K(=q) @x W{q} = K(—q) @k W(q) =W,
so extending scalars defines maps
Cr(—q) ®x W{qt =W
in Repg, (Gk) for all ¢ € Z.

Lemma 2.3.1 (Serre-Tate). For W € Repg,. (Gk), the natural Cg-linear G -equivariant
map
éw  EP(Cr(—q) @k W{g}) = W
q
is injective. In particular, W{q} = 0 for all but finitely many q and dimgx W{q} < oo for all
q, with Zq dimg W{q} < dime, W; equality holds here if and only if &w is an isomorphism.

Proof. The idea is to consider a hypothetical nonzero element in ker &y with “shortest length”
in terms of elementary tensors and to use that ker{y is a Cg-subspace yet each W{q}
contains no Cg-lines. To carry out this strategy, consider a nonzero v = (v,), € ker &y. We
choose such v with minimal length, where the length ¢(z) for

r = (24) € Dg(Cr(—q) @k W{q})

is defined as follows. For an element z, of Cx ®x W{q} we define ¢(z,) to be the least
integer n, > 0 such that z, is a sum of n, elementary tensors, and for a general x = ()
we define ¢(z) = > ¢(x,) (which makes sense since {(z,) = 0 for all but finitely many g).
Observe that Cj-scaling preserves length.

It suffices to prove that ¢(v) = 1. Indeed, this forces v = ¢ ® w for some ¢ € Cj; and
nonzero w € W{qy} (with some gy € Z), which is a contradiction since £y (v) = cw # 0in W.
To prove {(v) = 1, first observe that there is some ¢y such that v,, is nonzero. By applying
a Cp-scaling we can arrange that vy has a minimal-length expression vy, = >, ¢; ® y; with
c; € CX, y; € W{qo} = W(qo)®*, and some nonzero c;, = Q,(qo)-

Pick g € Gk, so g(v) € ker &y and hence g(v) — x(g) %v € ker{y. For each ¢ € Z the
gth component of g(v) — x(g)"%v is g(vy) — x(9) v, If > ¢ ® y;, is a minimal-length
expression for v, then since

9(vg) — x(9) "0y = Z(X(Q)_qg(cj,q) = x(0)""¢jq) ® Yjq;
we see that ¢(g(v,) — v,) < €(v,). Hence, g(v) — x(g) %v has length at most ¢(v). But
9(vgy) — x(9) " vgy = >_;(x(9)P9(c;) — x(9) % c;) ® y; since g(y;) = x(g9)Py; for all j (as

y; € W{q}), and this has strictly smaller length than v, because ¢;, € Q,(qo). Hence,
the point g(v) — x(g) v € ker &y has strictly smaller length than v, so it vanishes. Thus,
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x(g9)*g(v) = v for all g € Gk. In other words, v € Q,(—q) ®q, W{q}. But all elements of
this space are elementary tensors, so £(v) =1 (as v # 0). [

Remark 2.3.2. An alternative formulation of the Serre-Tate lemma can be given in terms of
the K-subspaces

Wig] :={w e W|g(w) = x(g9) w for all g € Gx} CW

instead of the K-subspaces W{q} C W(q) from (2.3.1) for all ¢ € Z. Since W{q] =
Q,(—q) ®q, W{q}, the Serre-Tate lemma says exactly that the W[g|’s are finite-dimensional
over K, vanish for all but finitely many ¢, and are mutually Cg-linearly independent within
W in the sense that the natural map ©(Cx ®x W/q]) — W in Repg, (Gk) is injective.

In the special case W = Cg ®q, H"(X%, Qp) for a smooth proper scheme X over K,
Faltings” Theorem 2.2.3 says that &y is an isomorphism and W{q} (rather than Wg|!) is

canonically K-isomorphic to H"~¢(X, Q% y x) forall g € Z.

Ezample 2.3.3. Let W = Cg(n) for a continuous character n : Gx — Z;. By the Tate-
Sen theorem, W{q} = Cx(nx 9 is l-dimensional over K if nx~9|;, has finite order
(equivalently, if n = x%) for a finitely ramified character ¢ : Gx — Z)) and W{q} vanishes
otherwise. In particular, there is at most one ¢ for which W{q} can be nonzero, since if
W{q}y,W{¢'} # 0 with ¢ # ¢ then n = %) and n = Y74’ with finitely ramified 1, v’ :
Gk = Z,), 50 X"|1, has finite image for 7 = ¢ — ¢’ # 0, which is absurd (use Example 1.1.5).

An interesting special case of Example 2.3.3 is when K contains Q,(u,), so x(Gk) is
contained in the pro-p group 1 + pZ,. Hence, n = x* makes sense for all s € Z,, and for
W = Cg(n) with such n the space W{q} vanishes for all ¢ when s ¢ Z whereas W{—s} is
1-dimensional over K if s € Z. Thus for s € Z, the map {c,(y) vanishes if s ¢ Z and it
is an isomorphism if s € Z. The case s € Z is of “non-algebraic” nature, and this property
situation is detected by the map ¢ (ys)-

Definition 2.3.4. A representation W in Repg, (G ) is Hodge—Tateif &y is an isomorphism.
We say that V' in Repq (Gr) is Hodge-Tate if Cx ®q, V' € Repg, (Gk) is Hodge Tate.

Example 2.3.5. If W is Hodge-Tate then by virtue of £y being an isomorphism we have
a non-canonical isomorphism W ~ ®&Cg(—¢)" in Repe, (Gk) with b, = dimgx W{q}.
Conversely, consider an object W € Repg, (Gx) admitting a finite direct sum decomposition
W ~ &Cgk(—¢)" in Repg, (Gk) with hy > 0 for all ¢ and hy = 0 for all but finitely many
g. The Tate-Sen theorem gives that W{g} has dimension h, for all ¢, so 3 dimx W{q} =
> s g = dimg, W and hence W is Hodge-Tate. In other words, the intrinsic property of
being Hodge—Tate is equivalent to the concrete property of being isomorphic to a finite direct
sum of various objects Cg(r;) (with multiplicity permitted).

For any Hodge-Tate object W in Repg, (Gk) we define the Hodge-Tate weights of W
to be those ¢ € Z such that W{q} := (Cg(q) ®c, W)Y is nonzero, and then we call
h, := dimg W{q} > 1 the multiplicity of ¢ as a Hodge-Tate weight of W. Beware that,
according to this definition, ¢ € Z is a Hodge-Tate weight of W precisely when there
is an injection Ck(—¢q) — W in Repg, (Gk), as opposed to when there is an injection
Ck(q) — W in Repg,. (Gk). For example, Ck(q) has —¢ as its unique Hodge-Tate weight.
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Obviously (by Example 2.3.5) if W is Hodge—Tate then so is WV with negated Hodge-Tate
weights (compatibly with multiplicities), so it is harmless to change the definition of “Hodge—
Tate weight” by a sign. In terms of p-adic Hodge theory, this confusion about signs comes
down to later choosing to use covariant or contravariant functors when passing between
p-adic representations and semilinear algebra objects (as replacing a representation space
with its dual will be the mechanism by which we pass between covariant and contravariant
versions of various functors on categories of representations).

2.4. Formalism of Hodge—Tate representations. We saw via Example 2.3.5 that for
any W in Repg, (Gk), W is Hodge-Tate if and only if its dual W is Hodge-Tate. By the
same reasoning, since

(©,Cr(—)") ®cy (@q,cK(_q/)h;f) ~ @, Cre(—r) e,

in Repg,. (Gk) we see that if W and W’ are HodgeTate then so is W®W’ (with Hodge-Tate
weights that are suitable sums of products of those of W and W'); we also have in such cases
that W & W’ is also Hodge-Tate. To most elegantly express how the Hodge-Tate property
interacts with tensorial and other operations, it is useful to introduce some terminology.

Definition 2.4.1. A (Z-)graded vector space over a field F' is an F-vector space D equipped
with direct sum decomposition @,ezD, for F-subspaces D, C D (and we define the gth
graded piece of D to be gri(D) := D,). Morphisms T : D’ — D between graded F-vector
spaces are [-linear maps that respect the grading (i.e., T'(D;) C D, for all ¢). The category
of these is denoted Grp; we let Grp s denote the full subcategory of D for which dimg D is
finite.

For any field F', Grp is an abelian category with the evident notions of kernel, cokernel,
and exact sequence (working in separate degrees). We write F'(r) for r € Z to denote the
F-vector space F' endowed with the grading for which the unique non-vanishing graded piece
is in degree r. For D, D’ € Grr we define the tensor product D ® D’ to have underlying F-
vector space D ®p D" and to have gth graded piece @y, j—,(D; ®r Dj}). Likewise, if D € Grpy
then the dual DY has underlying F-vector space given by the F-linear dual and its ¢th graded
piece is DY .

With these definitions, F(r) @ F(r') = F(r + '), F(r)¥ = F(—r), and the natural eval-
uation mapping D ® DY — F(0) and double duality isomorphism D ~ (D)"Y on F-vector
spaces for D in Grg s are morphisms in Grp. Observe also that a map in Grp is an isomor-
phism if and only if it is a linear isomorphism in each separate degree.

Definition 2.4.2. The covariant functor D = Dy : Repg, (Gk) — Grg is
D(W) = a,W{q} = ©,(Ck(q) ®c W)GK'
This functor is visibly left-exact.

Remark 2.4.3. Many functors valued in linear algebra categories are denoted with the letter
“D”. This stands for Dieudonné, who introduced the theory of Dieudonné modules that
provides a categorical equivalence between certain categories of group schemes and certain
categories of structures in (semi-)linear algebra.



CMI SUMMER SCHOOL NOTES ON p-ADIC HODGE THEORY (PRELIMINARY VERSION) 19

In general, the Serre-Tate lemma says that D takes values in Grg y and more specifically
that dimg D(W) < dimg, W with equality if and only if W is Hodge-Tate. As a simple
example, the Tate—Sen theorem gives that D(Ck(r)) = K(—r) for all r € Z. The functor D
satisfies a useful exactness property on Hodge—Tate objects, as follows.

Proposition 2.4.4. If 0 = W' — W — W" — 0 is a short exact sequence in Repg, (Gr)
and W is Hodge—Tate then so are W' and W, in which case the sequence

0— DW') = D(W) = DW") =0

in Grg, s is short exact (so the multiplicities for each Hodge—Tate weight are additive in short
exact sequences of Hodge—Tate representations).

Proof. We have a left-exact sequence
(2.4.1) 0— D(W')— D(W) — D(W")

with dimyx D(W') < dime, (W’) and similarly for W and W”. But equality holds for W by
the Hodge—Tate property, so

< dimg, W'+ dimg, W”
= dimcK VV,

forcing equality throughout. In particular, W’ and W” are Hodge-Tate and so for K-
dimension reasons the left-exact sequence (2.4.1) is right-exact too. |

Example 2.4.5. Although Proposition 2.4.4 says that any subrepresentation or quotient rep-
resentation of a Hodge—Tate representation is again Hodge—Tate, the converse is false in the
sense that if W/ and W” are Hodge-Tate then W can fail to have this property. To give a
counterexample, we recall that H! (G, Ck) # 0 by Theorem 2.2.7. This gives a non-split
exact sequence

(2.4.2) 0—-Cgr—-W—-Cxg—0

in Repc,, (Gk), and we claim that such a 1/ cannot be Hodge-Tate. To see this, applying
the left-exact functor D to the exact sequence above gives a left exact sequence

0 — K(0) — D(W) — K(0)

of graded K-vector spaces, so in particular D(W) = W{0} = W% If W were Hodge Tate
then by Proposition 2.4.4 this left exact sequence of graded K-vector spaces would be short
exact, so there would exist some w € W% with nonzero image in K(0). We would then get
a Cg-linear G g-equivariant section Cx — W via ¢ = cw. This splits (2.4.2) in Repg, (Gx),
contradicting the non-split property of (2.4.2). Hence, W cannot be Hodge-Tate.

The functor D = D is useful when studying how the Hodge Tate property interacts
with basic operations such as a finite scalar extension on K, tensor products, duality, and

replacing K with Jun (i.e., replacing Gk with Ix), as we now explain.



20 OLIVIER BRINON AND BRIAN CONRAD

Theorem 2.4.6. For any W € Repg, (Gk), the natural map K' @k Dy (W) — Dy (W) in
Gry s is an isomorphism for all finite extensions K'/K contained in K C Cg. Likewise,

the natural map K™ ® D (W) = Dgw(W) in Grigm ; s an isomorphism.

In particular, for any finite extension K'/K inside of K, an object W in Repg, (Gk) is
Hodge-Tate if and only iff it is Hodge-Tate when viewed in Repg, (Gk'), and similarly W is
Hodge-Tate in Repe, (G ) if and only if it is Hodge—Tate when viewed in Repg, (Gizm) =

Repg,. (Ig).

This theorem says that the Hodge—Tate property is insensitive to /re\placing K with a finite
extension or restricting to the inertia group (i.e., replacing K with K"). This is a prototype
for a class of results that will arise in several later contexts (with properties that refine
the Hodge-Tate property). The insensitivity to inertial restriction is a good feature of the
Hodge-Tate property, but the insensitivity to finite (possibly ramified) extensions is a bad
feature, indicating that the Hodge-Tate property is not sufficiently fine (e.g., to distinguish
between good reduction and potentially good reduction for elliptic curves).

Proof. By a transitivity argument, the case of finite extensions is reduced to the case when
K'/K is Galois. We first treat the finite Galois case, and then will need to do some work to

adapt the method to handle the extension K /K that is generally not algebraic but should
be thought of as being approximately algebraic (with Galois group Gg/Ix = Gi). Ob-
serve that Gal(K’/K) naturally acts semilinearly on the finite-dimensional K’-vector space
D, (W) with invariant subspace D, (W) over K, and likewise G /Ix = G naturally acts

——

semilinearly on the finite-dimensional Kun-vector space D = (W) with invariant subspace
D (W) over K.

Hence, for the case of finite (Galois) extensions our problem is a special case of classical
Galois descent for vector spaces: if F'/F is a finite Galois extension of fields and D’ is a
finite-dimensional F’-vector space endowed with a semilinear action by Gal(F’/F') then the
natural map

(2.4.3) F'@p (D90 - D

is an isomorphism. (See [47, Ch. II, Lemma 5.8.1] for a proof, resting on the non-vanishing
of discriminants for finite Galois extensions.) This has a generalization to arbitrary Galois
extensions F’/F with possibly infinite degree: we just need to impose the additional “dis-
creteness” hypothesis that each element of D" has an open stabilizer in Gal(F’/F') (so upon
choosing an F'-basis of D' there is an open normal subgroup Gal(F’/F}) that fixes the basis
vectors and hence reduces our problem to the finite case via the semilinear Gal(F/F)-action
on the Fi-span of the chosen F'-basis of D’).

For the case of I/(;‘, we have to modify the preceding argument since Jun /K is generally

not algebraic and the group of isometric automorphisms Au‘c([?;l /K) = Gal(K"™/K) =
Gk /Ix = Gy generally acts on the space of [-invariants in W with stabilizer groups that
are closed but not open. Hence, we require a variant of the Galois descent isomorphism
(2.4.3) subject to a (necessary) auxiliary continuity hypothesis.

First we check that the natural semilinear action on D’ := D = (W) by the profinite group
Gy = Gk /I is continuous relative to the natural topology on D’ as a finite-dimensional
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K'_vector space. It suffices to check such continuity on the finitely many nonzero graded
pieces Dy separately, and C x(—9) @ D;, with its G'k-action is naturally embedded in W
(by the Serre-Tate injection ). Since G acts continuously on W by hypothesis and the
natural topology on D, coincides with its subspace topology from naturally sitting in the
Cg-vector space Ck(—q) ® zm D;, we get the asserted continuity property for the action of
Gk = GK/]K on D;

Although G}, acts [/(E‘-semilinearly rather than @-linearly on D', since K is the frac-
tion field of a complete discrete valuation ring & := 0= the proof of Lemma 1.2.6 adapts
(using continuity of the semilinear Gy-action on D’) to construct a Gy-stable O-lattice
A C D'. Consider the natural &-linear Gy-equivariant map

(2.4.4) 0 R¢, N — A.

We shall prove that this is an isomorphism with A% a finite free & i{;module. Once this is
proved, inverting p on both sides will give the desired isomorphism K" ®x D, (W) ~ D' =
D (W).

To verify the isomorphism property for (2.4.4), we shall argue via successive approxima-

—

tion by lifting from the residue field k of K. Let 7 € Ok be a uniformizer, so it is also a
uniformizer of & = O and G}, acts trivially on 7. The quotient A/mA is a vector space
over k with dimension equal to d = rankyA = dim = D" and it is endowed with a natural
semilinear action by G, = Gal(k/k) that has open stabilizers for all vectors (due to the con-
tinuity of the Gi-action on D’ and the fact that A gets the m-adic topology as its subspace
topology from D'). Hence, classical Galois descent in (2.4.3) (applied to k/k) gives that
A/7A =k ®;, A in Repg(Gy) for the d-dimensional k-vector space A = (A/7A)%. In partic-
ular, A/mA ~ &’ compatibly with Gy-actions, so H'(Gy, A/7A) vanishes since H' (G}, k) = 0.
Since 7 is G-invariant, a successive approximation argument with continuous 1-cocycles (see
[42, §1.2, Lemma 3], applied successively to increasing finite quotients of Gy ) then gives that
H!,..(Gx, A) = 0. Hence, passing to Gj-invariants on the exact sequence

0—=ASA—A/TA—0

gives an exact sequence
0 — A% L A% — (A/7A)* — 0.

That is, we have A%k /r - A% ~ (A/7A)%* as k-vector spaces.

Since A% is a closed @k-submodule of the finite free €~ -module A of rank d and we
have just proved that A% /wA%* is finite-dimensional of dimension d over k = O /(r), a
simple approximation argument gives that any lift of a k-basis of A% /mA%* to a subset of
AC* is an Ok-spanning set of A% of size d. Thus, A®* is a finitely generated torsion-free
O'r-module, so it is free of rank d since its reduction modulo 7 is d-dimensional over k. Our
argument shows that the map (2.4.4) is a map between finite free &-modules of the same
rank and that this map becomes an isomorphism modulo 7, so it is an isomorphism. [ |

Further properties of D are best expressed by recasting the definition of D in terms of
a “period ring” formalism. This rests on the following innocuous-looking definition whose
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mathematical (as opposed to linguistic) importance will only be appreciated after some later
developments.

Definition 2.4.7. The Hodge-Tate ring of K is the Cg-algebra Byt = ®,ezCxk(¢q) in which
multiplication is defined via the natural maps Cg(q) ®c, Ck(¢') ~ Cx(q+ ¢').

Remark 2.4.8. We will encounter many rings denoted with the letter “B”. This stands for
Barsotti, who was one of the pioneers in using large ring-theoretic constructions to study
group schemes and related structures.

Observe that Byt is a graded Cg-algebra in the sense that its graded pieces are Cg-
subspaces with respect to which multiplication is additive in the degrees, and that the
natural G g-action respects the gradings and the ring structure (and is semilinear over Cg).
Concretely, if we choose a basis ¢ of Z,(1) then we can identify Byt with the Laurent
polynomial ring Cg|t,t™!] with the evident grading (by monomials in ¢) and Gx-action (via
g(t") = x(g)'t" for i € Z and g € G).

By the Tate Sen theorem, we have BGX = K. For any W € Repg . (Gk), we have

D(W) = @y(Cx(q) ®c, W) = (Bur ®c, W)*

in Grg, where the grading is induced from the one on Byr. Since Byt compatibly admits
all three structures of interest (C g-vector space structure, G g-action, grading), we can go in
the reverse direction (from graded K-vector spaces to Cg-representations of G ) as follows.

Let D be in Grg, so Bur ®kx D is a graded Cg-vector space with typically infinite
Cg-dimension:

gr"(Bur @k D) = ®q g1 (Bur) @k Dyp—q = ©,Cx(q) @k Dy

Moreover, the Gi-action on Byt Qg D arising from that on Byt respects the grading since
such compatibility holds in By, so we get the object

V(D) := gr’(Bur ®k D) = ®,Cx(—q) ®k Dy € Repe, (Gx)

since D, vanishes for all but finitely many ¢ and is finite-dimensional over K for all ¢ (as D €
Grg ). By inspection V(D) is a Hodge-Tate representation, and V : Grg y — Repg,. (Gk)
is a covariant exact functor.

Ezample 2.4.9. For each r € Z, recall that K (r) denotes the 1-dimensional K-vector space
K endowed with unique nontrivial graded piece in degree r. One checks that V(K (r)) =
Cxk(—r). In particular, V(K(0)) = Ck.

For any W in RepCK(G k), the multiplicative structure on Byt defines a natural Byr-
linear composite comparison morphism

(2.4.5) yw : Bur @k D(W) < Bur Qk (Bur ®c, W) — Bur @c, W

that respects the G g-actions (from Byt on both sides and from W) and the gradings (from
Byt on both sides and from D(W)) since the second step in (2.4.5) rests on the multiplication
in Byt which is Gg-equivariant and respects the grading of Byr. The Serre—Tate lemma
admits the following powerful reformulation:
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Lemma 2.4.10. For W in Repc, (Gk), the comparison morphism vy is injective. It is an
isomorphism if and only if W is Hodge—Tate, in which case there is a natural isomorphism

V(D(W)) = & (Bur @k D(W)) = 1 (Bur ©c, W) = 1 (Bur) ©c, W =W
in Repg, (Gk).
Proof. The map vy on gr'’s is the Q,(n)-twist of . [

We have seen above that if D is an object in Grg ; then V(D) is a HodgeTate object in
Repg, (Gk), so by Lemma 2.4.10 we obtain a Bur-linear comparison isomorphism

Y () : Bur ®x D(V(D)) ~ Bur ®cy V(D)

respecting G g-actions and gradings. Since Bg% = K and the Gg-action on the target of
Yv(p) respects the grading induced by Bur = @Ck(r), by passing to G'k-invariants on the
source and target of vy (p) we get an isomorphism

D(V(D)) ~ &,(V(D)(r))“x
in Grg with V(D)(r) ~ ®,Ck(r — q) ®x D,. Hence, (V(D)(r))9s = D, by the Tate-Sen
theorem, so we get an isomorphism
D(V(D)) ~ &D, =D
in Grg. This proves the first part of:

Theorem 2.4.11. The covariant functors D and V between the categories of Hodge—Tate
representations in Repg, (G ) and finite-dimensional objects in Grg are quasi-inverse equiv-
alences.

For any W, W' in Repcg, (Gx) the natural map

D(W)® D(W') — D(W & W)
in Grg induced by the G -equivariant map
(Bur ®@cx W) ®cy (But @c, W') — Bur @c, (W @c, W)

defined by multiplication in Byt is an isomorphism when W and W' are Hodge—Tate. Like-
wise, if W is Hodge—Tate then the natural map

D(W)®g D(WY) = D(W @ W") — D(Cg) = K(0)

in Grg is a perfect duality (between W{q} and WY{—q} for all q), so the induced map
D(WY) — D(W)Y is an isomorphism in Grg. . In other words, D is compatible with tensor
products and duality on Hodge—Tate objects.

Similar compatibilities hold for V. with respect to tensor products and duality.

Proof. For the tensor product and duality claims for D, one first checks that both sides
have compatible evident functorial behavior with respect to direct sums in Repg, (Gk).
Hence, we immediately reduce to the special case W = Ck(q) and W' = Ck(¢’) for some
q,q € Z, and this case is a straightforward calculation. Likewise, to analyze the natural
map V(D) ®¢c, V(D') — V(D ® D') we can reduce to the special case of the graded objects
D = K(ry and D' = K(r') for ;1" € Z; the case of duality goes similarly. [
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Definition 2.4.12. Let Repyr(Gx) € Repq, (Gk) be the full subcategory of objects V
that are Hodge-Tate (i.e., Cx ®q, V' is Hodge-Tate in Repg, (Gk)), and define the functor
Dur : Repq, (Gk) — Grg s by

Dur(V) = Dg(Ck ®q, V) = (Bur ®q, V)"
with grading induced by that on Byr.

Our results in Repg, (Gx) show that Repyr(Gk) is stable under tensor product, duality,
subrepresentations, and quotients (but not extensions) in Repq (G ), and that the formation
(ﬁ\DHT naturally commutes with finite extension on K as well as with scalar extension to
K. Also, our preceding results show that on Repyr(Gx) the functor Dyr is exact and is
compatible with tensor products and duality. The comparison morphism

Y : Bur @k Dur(V) — Bur ®q, V
for V€ Repq, (Gk) is an isomorphism precisely when V' is Hodge-Tate (apply Lemma 2.4.10
to W = Ck ®q, V), and hence Dyt : Repyr(Gi) — Grg s is a faithful functor.

Example 2.4.13. Theorem 2.2.3 can now be written in the following more appealing form:
if X is a smooth proper K-scheme then for n > 0 the representation V' := H} (X%, Q,) is
in Repyr(Gr) with Dur(V) =~ Hfj g, (X/K) == ©H" (X, Q% ;). Thus, the comparison

X/K
morphism vy takes the form of a Byr-linear G'g-equivariant isomorphism
(246> BHT ®K H?Iodgc (X/K> = BHT ®Qp Hn(XF7 QP)

in GI"K.
This is reminiscent of the de Rham isomorphism

Hig(M) ~ R ®q Hn(M, Q)"

for smooth manifolds M, which in the case of finite-dimensional cohomology is described by
the matrix (faj w;) for an R-basis {w;} of Hjy (M) and a Q-basis {o,} of H,,(M, Q). The
numbers fow are classically called periods of M, and to define the de Rham isomorphism
relating de Rham cohomology to topological cohomology we must use the coefficient ring R
on the topological side. For this reason, the ring Byt that serves as a coefficient ring for
Faltings’ comparison isomorphism (2.4.6) between Hodge and étale cohomologies is called
a period ring. Likewise, the more sophisticated variants on Byt introduced by Fontaine as
a means of passing between other pairs of p-adic cohomology theories are all called period
rings.

Whereas D on the category of Hodge Tate objects in Repg, (Gk) is fully faithful into
Grg ¢, Dur on the category Repyp(Gk) of Hodge Tate representations of Gk over Q, is
not fully faithful. For example, if n : Gx — ZJ has finite order then Dut(Q,(n)) =~
K(0) = Dur(Q,) by the Tate-Sen theorem, but Q,(n) and Q, have no nonzero maps
between them when 1 # 1. This lack of full faithfulness is one reason that the functor
Repyr(Gk) — Repc, (Gk) given by V ~~ Cg ®q, V is a drastic operation and needs to be
replaced by something more sophisticated.

To improve on Dyt so as to get a fully faithful functor from a nice category of p-adic
representations of Gi into a category of semilinear algebra objects, we need to do two
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things: we must refine Byt to a ring with more structure (going beyond a mere grading
with a compatible G k-action) and we need to introduce a target semilinear algebra category
that is richer than Grg ;. As a warm-up, we will next turn to the category of étale -
modules. This involves a digression away from studying p-adic representations of G (it
really involves representations of the closed subgroup G for certain infinitely ramified
algebraic extensions K., /K inside of K), but it will naturally motivate some of the objects
of semilinear algebra that have to be considered in any reasonable attempt to refine the
theory of Hodge—Tate representations.

2.5. Exercises.

Erercise 2.5.1. Let K be a p-adic field, and K /K an algebraic closure. There are plenty of
elements of Cx not in K. That is, K is never complete. Indeed, since [K : K] is infinite (as
follows by ramification considerations, for example), the non-completeness follows from |8,
3.4.3/1].

Nonetheless, prove that if L/K is a subextension of K /K then the subfield L C Cg
determines L. More specifically, prove that LNK =L.

Exercise 2.5.2. Let M be a topological module for a topological group G. If M has trivial
G-action then prove H! (G, M) = Homeon (G, M). Show by example with M = Z/2Z
and G = (Gq that dropping the continuity condition here makes this much larger, and
in particular gives rise to many nontrivial cohomology classes that are everywhere locally
trivial (i.e., have trivial restriction to the corresponding cohomology for the Gq,’s, say again

without the continuity condition).

Exercise 2.5.3. Let G be a topological group, and 0 — M’ — M — M" — 0 a short exact
sequence of G-modules such that M is a topological G-module and M’ (resp. M") is given
the subspace topology (resp. quotient topology).

(1) Verify that M’ and M" are then topological G-modules (so we say that the given short
exact sequence is topologically exact). We write H'(G, M) to denote H! (G, M) and
H;lg(G, M) to denote the usual algebraic G-cohomology of M ignoring topologies.

(2) Explain why H'(G, M) naturally sits inside of H}, (G, M), and show that the usual
6-term exact sequence

0— M — M¢ — M % HL(G, M) — HY (G, M) — HL (G, M")
restricts to a 6-term exact sequence

0— M°— M¢— M"¢ % HYG, M) — HY(G, M) — HY(G, M").

In particular, for any m” € M”, the obstruction to lifting it to M€ lies not only in
H.,, (G, M) but even in H'(G, M").

(3) Consider a G-module M’ that is a topological G-module relative to two topologies
7, and 75 such that Hi{(G, M') =0 but H%(G, M) # 0. (For example, G = Z,, with
the usual topology, and M’ = Z, endowed with the trivial G-action, and 7{ is the
discrete topology whereas 7 is the p-adic topology.) Construct a topologically exact
sequence

0—-M —-M-—>M"—0
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relative to 75 with M” = Z (having discrete topology and trivial G-action) such
that ME — M"“ is not surjective (and so the nontrivial obstructions do not lie
in Hil,(G, M")). Thus, it is rather important to keep track of subspace topologies

when trying to use a cohomological vanishing result for M’ to deduce surjectivity for
ME — M"|

Erercise 2.5.4. This exercise pushes Example 2.2.6 a bit further. Choose W € Repg,. (Gk)
and consider an exact sequence

0—-W—-=W —-Cxr—0

of Cg-vector spaces equipped with compatible Cg-semilinear Gk-actions (usual action on
Ck and given one on W).

(1) By choosing a Cg-linear splitting, show that under the resulting identification W &
Cxk the Gg-action is given by

g(w,c) = (g-w+ g(c)7(g), g(c))
where 7 : Gxg — W is a function satisfying 7(¢'g) = ¢'(7(g9)) + 7(g); ie, 7 is a
1-coboundary valued in the G g-module W.

(2) Prove that changing the Cg-linear splitting corresponds exactly to changing 7 by a
1-coboundary, and that 7 is continuous if and only if the Cg-semilinear G g-action
on W’ is continuous.

(3) Now assume W € Repg, (Gk) (i.e., the Gg-action is continuous). Show that the
cohomology class [r] € H. (G, W) only depends on the isomorphism class of the

cont
given exact sequence in Exté K[GK}(C i, W), and that this procedure defines a bijec-

tion Exte, g, (Cr, W) — Hepn (G, W).

(4) Prove that the bijection in (3) is Cg-linear. (Hint: use the description of the Ckg-
vector space structure on the left side via pushout and pullback operations),

3. ETALE ¢-MODULES

We now switch themes to describe p-adic representations of Gg for arbitrary fields E
of characteristic p > 0; later this will be applied with £ = k((u)) for a perfect field k
of characteristic p, so in particular £ must be allowed to be imperfect. The reason such
Galois groups will be of interest to us was sketched in Example 1.3.3. In contrast with the
case of Hodge-Tate representations in Repg, (Gk), for which there was an equivalence with
the relatively simple category Grg,; of finite-dimensional graded K-vector spaces, in our
new setting we will construct an equivalence between various categories of representations
of G and some interesting categories of modules equipped with an endomorphism that is
semilinear over a “Frobenius” operator on the coefficient ring.

We shall work our way up to Q,-representation spaces for G'g by first studying F,-
representation spaces for Gz, then general torsion Z,-representation spaces for Gz, and
finally Z,-lattice representations of G (from which the Q,-case will be analyzed via Lemma
1.2.6).

Throughout this section we work with a fixed field E that is arbitrary with char(E) = p > 0
and we fix a separable closure E;. We let G = Gal(E;/E). We emphasize that E is
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not assumed to be perfect, so the p-power endomorphisms of E and F, are generally not
surjective.

3.1. p-torsion representations. We are first interested in the category Repg, (Gg) of con-
tinuous representations of G on finite-dimensional F,-vector spaces V; (so continuity means
that the Gg-action on Vj factors through an action by Gal(E’/E) for some finite Galois ex-
tension F’/E contained in E, that may depend on V;). The role of the ring Byt in §2.4
will now be played by E,, and the relevant structures that this ring admits are twofold: a
G g-action and the p-power endomorphism g, : Ey — E, (i.e., x — zP). These two struc-
tures on E respectively play roles analogous to the G g-action on Byt and the grading on
Bur, and the properties Bg% = K and gr’(Byr) = Cgk have as their respective analogues
the identities ES2 = F and E Bl = F,. The compatibility of the G k-action and grading
on Byt has as its analogue the evident fact that the Gg-action on E, commutes with the
endomorphism ¢p, : x — 2P (ie., g(aP) = g(z)? for all z € E; and g € Gg). We write
vg : F — E to denote the p-power endomorphism of E, so pp.|p = ¢E.

Whereas in Theorem 2.4.11 we used Byt to set up inverse equivalences D and V between
the category of Hodge Tate objects in Repg, (Gk) and the category Grg y of graded K-
vector spaces, now we will use Ey to set up an equivalence between the category Repr(G E)
and a certain category of finite-dimensional E-vector spaces equipped with a suitable Frobe-
nius semilinear endomorphism.

The following category of semilinear algebra objects to later be identified with Repg (GE)
looks complicated at first, but we will soon see that it is not too bad. Below, we write ¢%,(M))
for an E-vector space M to denote the scalar extension E®,,, g My with its natural E-vector
space structure via the left tensor factor.

Definition 3.1.1. An ¢-module over E is a pair (Mg, ¢, ) where My is a finite-dimensional
E-vector space and ¢y, @ My — My is a ppg-semilinear endomorphism. A @p-module
(Mo, par,) is étale if the E-linearization 5, (M) — My of ¢p, (ie., the E-linear map
c®@m — cpp,(m)) is an isomorphism. Equivalently, a,(Mo) spans My over E, or in
other words the “matrix” of ¢y, relative to a choice of E-basis of M, is invertible). The
notion of morphism between étale ¢-modules over E' is defined in the evident manner, and
the category of étale p-modules over E is denoted ®ME'.

Remark 3.1.2. The reason for the word “étale” in the terminology is that a scheme X locally
of finite type over a field k of characteristic p > 0 is étale if and only if the relative Frobenius
map Fy, : X — X0 = Rk X Over k is an isomorphism.

We often write My rather than (Mg, ¢y, ) to denote an object in the category ®ME. The
simplest interesting example of an object in @M is My = E endowed with oy, = pg; this
object will simply be denoted as E. It may not be immediately evident how to make more
interesting objects in ® M, but shortly we will associate such an object to every object in
Repr<GE)'

We now give some basic constructions for making new objects out of old ones. There is an
evident notion of tensor product in ®ME. The notion of duality is defined as follows. For
My € ®ME, the dual MY has as its underlying E-vector space the usual E-linear dual of
My, and @pgy © My — My carries an E-linear functional £ : My — E to the composite of the
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E-linear pullback functional ¢%;(¢) : o5 (My) — E (i.e., c@m +— c-€(m)P = c-pgr(f(m))) and
the inverse My ~ ¢%,(My) of the E-linearized isomorphism ¢%,(My) ~ My induced by ¢az,.
To show that this is an étale Frobenius structure, the problem is to check that ¢y linearizes
to an isomorphism. A slick method to establish this is via the alternative description of ¢y
that is provided in Exercise 3.4.2.

In concrete terms, if we choose an E-basis for M, and use the dual basis for M/, then
the resulting “matrices” that describe the pp-semilinear endomorphisms ¢y, and ¢y are
transpose inverse to each other. The notions of tensor product and duality as defined in
PME satisfy the usual relations (e.g., the natural double duality isomorphism My ~ My
is an isomorphism in ®M¢, and the evaluation pairing My ® My — E is a morphism in
DME).

Lemma 3.1.3. The category ®ME' is abelian. More specifically, if h - M’ — M is a
morphism in ®ME then the induced Frobenius endomorphisms of ker h, im h, and coker h
are étale (i.e., have E-linearization that is an isomorphism).

Proof. Consider the commutative diagram

g (h)

Pr(M') —i(M)

zl lg

M,—h)M

This induces isomorphisms between kernels, cokernels and images formed in the horizontal
directions, and the formation of kernels, cokernels, and images of linear maps commutes
with arbitrary ground field extension (such as g : E — FE). Hence, the desired étaleness
properties are obtained. [ |

We now use E; equipped with its compatible Gg-action and ¢ p-semilinear endomorphism
¢, to define covariant functors Dg and Vg between Repg (Gg) and DME.

Definition 3.1.4. For any V, € Repr(GE), define Dg(Vp) = (E; ®¥, V5)9E as an E-vector
space equipped with the ¢p-semilinear endomorphism ¢p ;) induced by ¢p, @ 1. (This
makes sense since ¢, commutes with the Gg-action on Fj.)

For any My € ®ME we define V(M) to be the F-vector space (E, ®p My)?=! with its
evident G g-action induced by the Gg-action on Eg; here, ¢ = pp, ® @u,-

Some work is needed to check that Dy takes values in @Mgt and that Vg takes values
in Repp, (Gg). Indeed, it is not at all obvious that Dp(Vp) is finite-dimensional over E in
general, nor that that E-linearization of ¢p, ) is an isomorphism (so Dg(Vy) € ®My).
Likewise, it is not obvious that V(M) is finite-dimensional over F,, though it follows from
the definition that each element of Vg(My) has an open stabilizer in Gg (since such an
element is a finite sum of elementary tensors in £y, ® g My, and a finite intersection of open
subgroups is open). Thus, once finite-dimensionality over F,, is established then Vg(My)
will be an object in Repp (GE).

Ezxample 3.1.5. There are two trivial examples that can be worked out by hand. We have
Dg(F,) = E with Frobenius endomorphism ¢g and Vg(E) = F, with trivial G g-action.
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Remark 3.1.6. It is sometimes convenient to use contravariant versions D7 and V7, of the
functors Dg and Vg. These may be initially defined in an ad hoc way via

D3 (Vo) = Dp(Vy"), Vi(Mo) = Ve(M)

but the real usefulness is due to an alternative formulation: since £, ®p, Vi ~ Homg, (Vo, Es)
compatibly with the ¢ -actions and the G'g-actions (defined in the evident way on the Hom-
space, namely (g.£)(v) = g(¢(g~'v))), by passing to G g-invariants we naturally get D5(V) ~
Homp,¢,1(Vo, Es) as E-vector spaces equipped with a ¢p-semilinear endomorphism. Like-
wise, we naturally have an F),[Gg|-linear identification V3, (My) ~ Hompg (Mo, E) onto the
space of E-linear Frobenius-compatible maps from M, into Ej.

Let us begin our study of Dg and Vg by checking that they take values in the expected
target categories.

Lemma 3.1.7. For any Vi € Repy, (Gg), the E-vector space Dp(Vy) is finite-dimensional
with dimension equal to dimg, Vo, and the E-linearization of op,vy) is an isomorphism. In
particular, Dg(Vp) lies in ®ME with E-rank equal to the F,-rank of Vj.

For any My € ®ME, the Fy-vector space Vg(Moy) is finite-dimensional with dimension at
most dimg My. In particular, Vg(My) lies in Repg (Gg) with Fy-rank at most dimg M.

The upper bound for dimg, Vg(M,) in this lemma will be proved to be an equality in
Theorem 3.1.8, but for now it is simpler (and sufficient) to just prove the upper bound.

Proof. Observe that Ey ®r, Vo equipped with its diagonal G g-action is a finite-dimensional
E-vector space equipped with a semilinear G'g-action that is continuous for the discrete
topology in the sense that each element has an open stabilizer (as this is true for each element
of FEg and Vj, and hence for finite sums of elementary tensors). Thus, the classical theorem
on Galois descent for vector spaces in (2.4.3) (applied to E,/E) implies that E, ®g, 1} is
naturally identified with the scalar extension to Fy of its E-vector subspace of GG g-invariant
vectors. That is, the natural E,-linear G g-equivariant map

(3.1.1) E, ®p Dp(Vo) = B, ®p (E, @5, Vo))" — E, @5, Vo

induced by multiplication in E; is an isomorphism. In particular, Dg(Vj) has finite F-
dimension equal to dimg, Vj. (This isomorphism is an analogue of the comparison morphism
~yw in (2.4.5) defined via multiplication in Byt in our study of Hodge—Tate representations.)

A crucial observation is that (3.1.1) satisfies a further compatibility property beyond the
E-linearity and Gg-actions, namely that it respects the natural Frobenius endomorphisms
of both sides (as follows from the definition). To exploit this, we first recall that for any
vector space D over any field F' of characteristic p > 0, if pp : D — D is a pp-semilinear
endomorphism (with g : F' — F denoting x +— aP) then the F-linearization ¢5(D) — D
of vp is compatible with arbitrary extension of the ground field j : F' — F’ (as the reader
may check, ultimately because ¢r and @p are compatible via j). Applying this to the field
extension I/ — E, we see that the E-linearization of ¢p, ;) is an isomorphism if and only if
the Eg-linearization of g, ® ¢p, ) is an isomorphism. But Frobenius-compatibility of the
Eg-linear isomorphism (3.1.1) renders this property equivalent to the assertion that for any
finite-dimensional F,-vector space V| the Ej-linearization of the Frobenius endomorphism
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v, ® 1 of By ®p, Vp is an isomorphism. By unravelling definitions we see that this E,-
linearization is naturally identified with the identity map of E; ®g, Vp, so it is indeed an
isomorphism. Hence, we have proved the claims concerning Dg (V).

Now we turn to the task of proving that Vg (M) has finite F-dimension at most dimpg M,
(and in particular, it is finite). To do this, we will prove that the natural Es-linear G-
compatible and Frobenius-compatible map

(3.1.2) E, @r, Ve(My) = E, ®p, (B, @ M)~ — E, @ Mo

induced by multiplication in Ej is injective. (This map is another analogue of the compari-
son morphism for Hodge-Tate representations.) Such injectivity will give dimg, Vg (M;) <
dimg M, as desired.

Since any element in the left side of (3.1.2) is a finite sum of elementary tensors, even
though V(My) is not yet known to be finite-dimensional over F, it suffices to prove that if
Vi, .., 0 € VEp(My) = (Es ®p My)?=! are Fy-linearly independent then in Es ®p M, they
are Fg-linearly independent. We assume to the contrary and choose a least » > 1 for which
there is a counterexample, say Y a;v; = 0 with a; € F, not all zero. By minimality we have
a; # 0 for all 4, and we may therefore apply E-scaling to arrange that a; = 1. Hence,

U= — Y 0 ;. But v = p(vy) since v; € Vp(My), so
== pra)e() ==Y (e
i>1 i>1

since v; € Vg(Mp) for all ¢ > 1. Hence,

Z(ai — g, (a;))v; = 0.

i>1
By minimality of r we must have a; = g, (a;) for all i > 1, so a; € BB~ = F, for all
1 > 1. Thus, the identity v; = — Ei>1 a;v; has coefficients in F,, so we have contradicted
the assumption that the v;’s are F)-linearly independent. [ |

By Lemma 3.1.7, we have covariant functors D : Repg (Gg) — @M and Vi : @Mp —
Repg, (Gg), and D is rank-preserving. Also, since

(Es @, Vo)~ = B~ @r, Vo = Vo, (Es ®p My)%" = ES* @p My = M,

(use an F,-basis of 1 and an E-basis of M respectively), passing to Frobenius-invariants
on the isomorphism (3.1.1) defines an isomorphism Vg(Dg(Vp)) — Vo in Repp, (Gg) and
passing to G'g-invariants on the injection (3.1.2) defines an injection Dg(Vg(My)) — My in
DM

Theorem 3.1.8. Via the natural map VgoDg ~ id and the inclusion DgoVg — id,
the covariant functors Dg and Vg are exact rank-preserving quasi-inverse equivalences of
categories, and each functor is naturally compatible with tensor products and duality.

Proof. The isomorphism (3.1.1) implies that Dp is an exact functor (as it becomes exact
after scalar extension from E to Ej). For any two objects Vg and Vj in Repp (GEg), the
natural map

Dg(Vo) ®& De(Vy) — De(Vo ®r, V7))
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induced by the Frobenius-compatible and G g-equivariant map
(Es ®r, Vo) ®p (Es ®F, Vi) = E; @5 (Vo ® V)

arising from multiplication on FEj is a map in ® M. This map is an isomorphism (and so Dg
is naturally compatible with the formation of tensor products) because we may apply scalar
extension from F to Ey and use the isomorphism (3.1.1) to convert this into the elementary
claim that the natural map

(Es ®r, Vo) ®p, (Es ®F, Vy) — B, ®Fp, (Vo ®F, Vj)

is an isomorphism.
Similarly we get that Dg is compatible with the formation of duals: we claim that the
natural map

(3.1.3) Dgp(Vo) @k Dg(Vy') ~ Dp(Vo ®@F, V') — De(F,) = E

(with second step induced by functoriality of Dg relative to the evaluation morphism Vj ®
Vo' — F, in Repg (Gg)) is a perfect E-bilinear duality between Dy (V) and Dg(Vy'), or
equivalently the induced morphism Dg (V') — Dg (V)Y that is checked to be a morphism
in ®M¢E is an isomorphism. To verify this perfect duality claim it suffices to check it after
scalar extension from E to Ej, in which case via (3.1.1) the pairing map is identified with
the natural map

(Es ®r, Vo) @5, (B @r, V') ~ B, ®F, (Vo ®F, V') — Es

that is a perfect E,-bilinear duality pairing.

To carry out our analysis of Vg and Dgo Vg, the key point is to check that Vg is rank-
preserving. That is, we have to show that if dimp My = d then dimg, ¥/ (M,) = d. Once
this is proved, the injective map (3.1.2) is an isomorphism for F,-dimension reasons and so
passing to GG g-invariants on this isomorphism gives that Do Vg — id is an isomorphism.
The compatibility of Vg with respect to tensor products and duality can then be verified
exactly as we did for Dg by replacing (3.1.1) with (3.1.2) and using Vg(E) = F,, to replace
the above use of the identification Dg(F,) = E.

Our problem is now really one of counting: we must prove that the inequality # V g(My) <
p? for d := dimg My is an equality. Arguing as in Remark 3.1.6 with My in the role of M,
and using double duality gives V(M) ~ Hompg (M, E;). The key idea is to interpret this
set of maps in terms of a system of étale polynomial equations in d variables. Choose a basis
{m1,...,mq} of My, so My has a dual basis {m,;'} and ppy(m]) = >, ciym;” with (ci;) €
Matyxq(E) an invertible matrix. A general E-linear map My — FE, is given by m) — z; € E,
for each i, and Frobenius-compatibility for this map amounts to the system of equations
xl =), cijx; for all j. Hence, we have the identification Vg(My) = HomE_alg(A, E), where

A=E[Xy,..., Xd/(X? =) cijXi)i<i<a-

Clearly A is a finite E-algebra with rank p?, and we wish to prove that its set of E,-valued
points has size equal to p? = dimp A. In other words, we claim that A is an étale E-algebra
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in the sense of commutative algebra. This property amounts to the vanishing of QY /B and
by direct calculation

Op = (©AAX) /() eijdX))1<j<a-

J

Since det(c;;) € EX C A*, the vanishing follows. |

3.2. Torsion and lattice representations. We wish to improve on the results in §3.1
by describing the entire category Repzp(G g) of continuous Gg-representations on finitely
generated (not necessarily free) Z,-modules, and then passing to Repq, (Gr) by a suitable
localization process. The basic strategy is to first handle torsion objects using Z,-length
induction (and using the settled p-torsion case from §3.1 to get inductive arguments off
the ground), and then pass to the inverse limit to handle general objects in Repy (Gr)
(especially those that are finite free as Z,-modules). One difficulty at the outset is that since
we are lifting our coefficients from F), to Z, on the G g-representation side, we need to lift the
E-coefficients in characteristic p on the semilinear algebra side to some ring of characteristic
0 admitting a natural endomorphism lifting ¢ (as well as an analogue for Fy so as to get
a suitable lifted “period ring”). Since E is generally not perfect, we cannot work with the
Witt ring W(E) (which is generally quite bad if £ is imperfect).

Thus, we impose the following hypothesis involving additional auxiliary data that will be
fixed for the remainder of the present discussion: we assume that we are given a complete
discrete valuation ring 0, with characteristic 0, uniformizer p, and residue field E, and
we assume moreover that there is specified an endomorphism ¢ : 0 — O lifting pg
on the residue field E. We write & to denote the fraction field @¢[1/p] of Ogs. Abstract
commutative algebra (the theory of Cohen rings [35, Thm. 29.1, 29.2]) ensures that if we
drop the Frobenius-lifting hypothesis then there is such an 0 and it is unique up to non-
canonical isomorphism. It can also be proved [35, Thm. 29.2] that the lift ¢ always exists.
The present discussion is generally only applied with a special class of fields E for which we
can write down an explicit such pair (O, ¢). We shall now construct such a pair in a special
case, and then for the remainder of this section we return to the general case and assume
that such an abstract pair (O, ¢) has been given to us.

Ezample 3.2.1. Assume that E = k((u)) with k perfect of characteristic p > 0. Let W(k)
denote the ring of Witt vectors of k. This is the unique absolutely unramified complete
discrete valuation ring with mixed characteristic (0,p) and residue field k; see §4.2. (If k is
finite, W (k) is the valuation ring of the corresponding finite unramified extension of Q,.) In
this case an explicit pair (O, @) satisfying the above axioms can be constructed as follows.

Let & = W(k)[u]; this is a 2-dimensional regular local ring in which (p) is a prime ideal
at which the residue field is k((u)) = E. Since the localization &, at the prime ideal (p) is
a 1-dimensional regular local ring, it is a discrete valuation ring with uniformizer p. But u is
a unit in this localized ring (since u ¢ (p) in &), so &, is identified with the localization of
the Dedekind domain S[1/u] at the prime ideal generated by p. Hence, the completion 6@))
of this discrete valuation ring is identified with the p-adic completion of the Laurent-series
ring &[1/u] over W(k). In other words, this completion is a ring of Laurent series over W (k)
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with a decay condition on coefficients in the negative direction:

Sy =~ {Zanu” | a, € W(k) and a,, — 0 as n — —oo} :
neZ

We define O = &¢,,. The endomorphism } a,u" — >~ o(a,)u" of & (with o the unique

Frobenius-lift on W(k)) uniquely extends to a local endomorphism of &,y and hence to a

local endomorphism ¢ of the completion 0.

Fix a choice of a pair (Og, @) as required above. Since O is a complete discrete valua-
tion ring with residue field £ and we have fixed a separable closure E of E, the maximal
unramified extension (i.e., strict henselization) 03" of 0, with residue field E; makes sense
and is unique up to unique isomorphism. It is a strictly henselian (generally not complete)
discrete valuation ring with uniformizer p, so its fraction field &™ is 02*[1/p]. By the uni-
versal property of the maximal unramified extension (or rather, of the strict henselization),
if f:0¢ — O is alocal map (such as ¢ or the identity) whose reduction f : E — E is en-
dowed with a specified lifting 7/ : E; — E; then there is a unique local map f': 03" — 03"
over f lifting 7/. By uniqueness, the formation of such an f’ is compatible with composition.

By taking f = ¢ and 7/ = g, we get a unique local endomorphism of %" again
denoted ¢ that extends the given abstract endomorphism ¢ of 0, and lifts the p-power
map on F,. Additionally, by taking f to be the identity map and considering varying
feGp= Gal(E,/E) we get an induced action of Gg on 3" that is simply the classical
identification of Autg, (OF") = Gal(&"™ /&) with the Galois group Gg of the residue field.
Moreover, this Gg-action on %" is continuous and it commutes with ¢ on %" because the
uniqueness of our lifting procedure reduces this to the compatibility of the G'g-action in\d
Frobenius endomorphism on both & and E;. In particular, the induced Gg-action on Og"
is continuous and commutes with the induced Frobenius endomorphism.

Definition 3.2.2. The category @Mgiﬁ of étale p-modules over Og consists of pairs (A, p_y)
where . is a finitely generated 0g-module and ¢ 4 is a ¢-semilinear endomorphism of .#
whose Og-linearization ¢*(.#) — .# is an isomorphism.

Obviously ®M¢' is the full subcategory of p-torsion objects in @Mgtg. Note that in the
preceding definition we do not require .#Z to be a finite free module over €, or over one
of its artinian quotients @ /(p"); this generality is essential for the category ®Mg' to have
nice stability properties. In particular, the étaleness condition in Definition 3.2.2 that ¢ 4
linearize to an isomorphism cannot generally be described by a matrix condition. Since
©*(A) and A have the same Og-rank and the same invariant factors (due to the uniformizer
p being fixed by ¢), the linearization of ¢_4 is a linear map between two abstractly isomorphic
finitely generated &z-modules, whence it is an isomorphism if and only if it is surjective. But
surjectivity can be checked modulo p, so we conclude that the étaleness property on ¢ , can
be checked by working with the finite-dimensional vector space .# [p .# over Ugz/(p) = E.

The category Repz (Gg) has a good notion of tensor product, as well as duality functors
Homg, (-, Qp/Z,) and Homg, (-, Z,) on the respective full subcategories of objects that are
of finite Z,-length and finite free over Z,,.
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There are similar tensor and duality functors in the category (IDM(%;. Indeed, tensor
products .# ® .#' are defined in the evident manner using the &g-module tensor prod-
uct A ®g, ' and the Frobenius endomorphism ¢, ® ¢ ./, and this really is an étale
p-module; i.e., the Og-linearization of the tensor product Frobenius endomorphism is an
isomorphism (since this Og-linearization is identified with the tensor product of the Og-
linearizations of ¢, and ¢ ,/). For duality, we use the functor Homg, (-, Os) on objects
that are finite free over 0 and the Frobenius endomorphism of this linear dual is defined
similarly to the p-torsion case over E. That is, for ¢ € .#" = Homg, (4, Os) the element
o () € A" is the composite of the Og-linear pullback functional p*(¢) : *(A) — Os
and the inverse 4 ~ p*() of the Og-linearization of ¢ ,. To verify that this Frobenius
structure is étale (i.e., it linearizes to an isomorphism ¢*(.#) ~ .#') one can establish an
alternative description of ¢ ,v exactly as in Exercise 3.4.2.

Likewise, on the full subcategory @Mgifor of objects of finite O¢-length we use the duality
functor Homyg, (-, &/0s) on which we define a -semilinear endomorphism akin to the finite
free case, now using the natural Frobenius structure on & /0 to identify & /0 with its own
scalar extension by ¢ : 0 — Og. To see that this is really an étale Frobenius structure one
again works out an alternative description akin to Exercise 3.4.2, but now it is necessary to
give some thought (left to the reader) to justifying that scalar extension by ¢ : Os — O
commutes with the formation of the & /0 s-valued dual (hint: the scalar extension ¢ is flat
since it is a local map between discrete valuation rings with a common uniformizer).

Lemma 3.2.3. The category ®M is abelian.

Proof. The content of this verification is to check the étaleness property for the linearized
Frobenius maps between kernels, cokernels, and images. Since the formation of cokernels
is right exact (and so commutes with reduction modulo p), the case of cokernels follows
from Lemma 3.1.3 and the observed sufficiency of checking the étaleness property modulo p.
Thus, if f : A" — A is a map in DM et then coker f has an étale Frobenius endomorphism.

Since ¢ : Og — Oy is flat, the formatlon of im f and ker f commutes with scalar extension
by ¢. That is, im ¢*(f) ~ ¢*(im f) and similarly for kernels. Since the image of a linear map
in a “module category” is naturally identified with the kernel of projection to the cokernel,
the known isomorphism property for the linearizations of the Frobenius endomorphisms of
A and coker f thereby implies the same for im f. Repeating the same trick gives the result
for ker f due to the étaleness property for .#’ and im f. |

Fontaine discovered that by using the completion @‘ as a “period ring”, one can de-
fine inverse equivalences of categories between Repg (G'g) and ®M, 23 recovering the inverse
equivalences Dg and Vg between p-torsion subcategories in Theorem 3.1.8. To make sense
of this, we first require a replacement for the basic identities ES? = E and EY =1 F,
that lay at the bottom of our work in the p-torsion case in §3.1.

—G —
Lemma 3.2.4. The natural inclusions O — O " and & — (&m)YE are equalities, and
likewise Z, = (0%)?=" and Q, = (&m)#=1.

The successive approximation method used to prove this lemma will arise again later, but
for now we hold off on axiomatizing it to a wider context.
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Proof. Since G and ¢ fix p, and S = 5’;[1 /p], the integral claims imply the field claims.

. . . . . ——Gg
Hence, we focus on the integral claims. The evident inclusions 0 — O = and Z, —

(52?‘)“1 are local maps between p-adically separated and complete rings, so it suffices to
prove surjectivity modulo p™ for all n > 1. We shall verify this by induction on n, so we first
check the base case n = 1.

By left-exactness of the formation of Gg-invariants, the exact sequence

0 TF 2 5,0

of Og-modules gives a linear injection (@‘)GE /(p) — E¢E = E of nonzero modules over
Os/(p) = E, so this injection is bijective for F-dimension reasons. In particular, the natural
map Op — (@)GE/(])) is surjective. Since EY®~' = F, = Z,/(p), a similar argument gives
that Z, — (@1)9”:1/(1)) is surjective. This settles the case n = 1.

Now consider n > 1 and assume that 0y — (@)GE /(p"™1) is surjective. Choose any
§ € (@)GE; we seek x € Oy such that £ = x mod p”. We can choose ¢ € O such that
E=cmodp" ! s0&—c=pt¢ with ¢ € (@)GE. By the settled case n = 1 there exists
¢ € Og such that & = ¢ mod p, so £ = ¢+ p" 1 mod p" with ¢+ p"~'c € Oc. The case of
p-invariants goes similarly. |

Theorem 3.2.5 (Fontaine). There are covariant naturally quasi-inverse equivalences of
abelian categories

Ds : Repy (Gp) — ®Mg,, Ve : @My — Repy (Gp)

&)

defined by
De(V) = (08 ®z, V), V(M) = (0% ®¢, M)?=".

(The operator ¢p, vy is induced by ¢ on OF.) These functors preserve rank and invariant
factors over Og and Z, (in particular, they are length-preserving over Og and Z, for torsion
objects and preserve the property of being finite free modules over Og and Z,), and are
compatible with tensor products.

The functors Dg and Vg are each naturally compatible with the formation of the duality
functors Homg, (-,&/0s) and Homg, (-, Q,/Z,) on torsion objects, as well as with the for-
mation of the duality functors Homg, (-, O¢) and Homgz, (-, Z,) on finite free module objects.

We emphasize that it is not evident from the definitions that Dg (V) is finitely generated
over O for every V in Repg (GE), let alone that its Frobenius endomorphism (induced by

the Frobenius of @‘) is étale. Likewise, it is not evident that Vg(M) is finitely generated
over Z, for every M in ®Mg , nor that the G p-action on this (arising from the G'g-action

on @‘) is continuous for the p-adic topology. These properties will be established in the
course of proving Theorem 3.2.5.

Before we prove Theorem 3.2.5 we dispose of the problem of &g-module finiteness of
Dg(V) for V € Repg (Gg) via the following lemma that is a generalization of the completed
unramified descent for finite free modules that was established in the course of proving
Theorem 2.4.6.
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Lemma 3.2.6. Let R be a complete discﬂe valuation ring with residue field k. Choose
a separable closure ks of k and let R© = R™ be the completion of the associated mazimal
unramified extension R™ of R (with residue field k). Let Gy = Gal(ks/k) act on R' over R
in the canonical manner.

Let M be a finitely generated R'-module equipped with a semilinear Gy-action that is con-
tinuous with respect to the natural topology on M. The R-module MS* is finitely generated,
and the natural map

[6%V R, KRR (MGk) — M

is an isomorphism, so MY has the same rank and invariant factors over R as M does over
R'. In particular, M ~ MS%* is an exact functor and M is a free R-module if and only if
M s a free R'-module.

This lemma goes beyond the completed unramified descent result that was established
(for the special case R = Ok but using general methods) in the proof of Theorem 2.4.6
because we now allow M to have nonzero torsion. This requires some additional steps in the
argument.

Proof. Once the isomorphism result is established, the exactness of MS* in M follows from
the faithful flatness of R — R’.

Let 7 be a uniformizer of R, so it is also a uniformizer of R’ and is fixed by the Gj-action.
We first treat the case when M has finite R'-length, which is to say that it is killed by 7"
for some r > 1. We shall induct on r in this case. If »r = 1 then M is a finite-dimensional
ks-vector space equipped with a semilinear action of G having open stabilizers, so classical
Galois descent for vector spaces as in (2.4.3) implies that the natural map k, ®, M — M
is an isomorphism. (In particular, M is a finite-dimensional k-vector space.) This is the
desired result in the 7-torsion case.

Now suppose r > 1 and that the result is known in the 7"~ !-torsion case. Let M’ = 7" M
and M" = M/M". Clearly M’ is m-torsion and M” is 7" ~'-torsion. In particular, the settled
m-torsion case gives that M’ is Gp-equivariantly isomorphic to a product of finitely many
copies of ks, so HY(Gy, M) = 0. Hence, the left-exact sequence of R-modules

0 — M/Gk _ MGk - M//Gk =0

is exact. The flat extension of scalars R — R’ gives exactness of the top row in the following
commutative diagram of exact sequences

0 —=R @z M'“* —R @p M% —=R @5 M"“* —=0

:lalwl la]\/[ Qi lg

0 M’ M M" 0

in which the outer vertical maps a, and o are isomorphisms by the inductive hypothesis.
Thus, the middle map aj, is an isomorphism. This settles the case when M is a torsion
R'-module. In particular, the functor M ~» M®* is exact in the torsion case.
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In the general case we shall pass to inverse limits from the torsion case. Fix n > 1. For
all m > n we have an R’-linear GGj-equivariant right exact sequence

(3.2.1) M/(x™) 5 M/ (™) — M/(z") — 0

of torsion objects, so applying the exact functor of G-invariants gives a right-exact sequence
of finite-length R-modules. But M% ~ lim(M/(7™))% since M = lim(M/(z™)), and
— —
passage to inverse limits is exact on sequences of finite-length R-modules, so passing to
the inverse limit (over m) on the right-exact sequence of Gy-invariants of (3.2.1) gives the
right-exact sequence
MO MO — (M (7)) % = 0

for all n > 1. In other words, the natural R-module map M /(x") — (M/(7"))%* is an
isomorphism for all n > 1.

In the special case n = 1, we have just shown that M /() ~ (M /(7)) and our results
in the m-torsion case ensure that (M /(7)) is finite-dimensional over k. Hence, M%* /(7)
is finite-dimensional over k = R/(m) in general. Since M* is a closed R-submodule of the
finitely generated R’-module M, the R-module M is m-adically separated and complete.
Thus, if we choose elements of M©* lifting a finite k-basis of M* /() then a m-adic successive
approximation argument shows that such lifts span M over R. In particular, MS* is a
finitely generated R-module in general.

Now consider the natural map ay; : R’ @z M® — M. This is a map between finitely
generated R’-modules, so to show that it is an isomorphism it suffices to prove that the
reduction modulo 7™ is an isomorphism for all n > 1. But aj; mod 7™ is identified with
/() due to the established isomorphism MY /(7™) ~ (M/(x™))“. Hence, the settled
isomorphism result in the general torsion case completes the argument. |

Now we are ready to take up the proof of Theorem 3.2.5.

Proof. For V' € Repg (Gg), consider the natural @-linear “comparison morphism”

(3.2:2) OF ®5, Ds(V) = OFF ©0, (O @2, V) — G @3, V.
This is compatible with the natural G'g-action and Frobenius endomorphism on both sides.
Setting M = 03" ®z, V, the semilinear action of Gg on M is continuous (due to the

hypothesis that G acts continuously on V' and the evident continuity of its action on @1)
Thus, we can apply Lemma 3.2.6 with R = 0 to deduce that Dg(V) = MY is a finitely
generated Og-module and that (3.2.2) is an isomorphism.

We immediately obtain some nice consequences. First of all, the Frobenius structure
on Dg(V) is étale (i.e., its Og-linearization is an isomorphism) because it suffices to check

this after the faithfully flat Frobenius-compatible scalar extension 0 — @1, whereupon the
isomorphism (3.2.2) reduces this étaleness claim to the fact that the Frobenius endomorphism
© ® 1 on the target of (3.2.2) linearizes to an isomorphism. Hence, we have shown that Ds
does indeed take values in the category @Mg;. As such, we claim that De is an exact
functor that preserves rank and invariant factors (of Z,-modules and &g-modules) and is
naturally compatible with tensor products (in a manner analogous to the tensor compatibility
that we have already established in the p-torsion case in Theorem 3.1.8). It suffices to
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check these properties after faithfully flat scalar extension to @1, and after applying such a
scalar extension we may use (3.2.2) to transfer the claims to their analogues for the functor
Vo~ @1 ®z, V', all of which are obvious.

Now we can establish half of the claim concerning inverse functors: for any V' in Repg (Gg)
we claim that Vg(Dg(V)) is naturally Z,[Ggl-linearly isomorphic to V' (but we have not yet
proved that Ve carries general étale p-modules over & into Repzp(G g)!). By passing to
p-invariants on the isomorphism (3.2.2) we get a natural Z,[G g|-linear isomorphism

V(D (V) = (OF" ®2, V)77,
so we just have to show that the natural Z,[Ggl-linear map
V= (05 ©2, V)"
defined by v — 1 ® v is an isomorphism. To justify this, it suffices to show that the diagram
O_’Zpﬁ@lw;l@_’o
is an exact sequence, since the rightmost term is Z,-flat (so applying V' ®z, (-) then yields
an exact sequence, giving the desired identification of V' with a space of p-invariants).
The identification of Z,, with ker(p — 1) in 0% follows from Lemma 3.2.4, so we just have
to show that ¢ —1 is surjective as a Z,-linear endomorphism of &3". By p-adic completeness

and separatedness of 3", along with the fact that ¢ —1 commutes with multiplication by p,

we can use successive approximation to reduce to checking the surjectivity on @ /(p) = Es.
But on F; the self-map ¢ — 1 becomes = — xP — x, which is surjective since E is separably
closed.

We now turn our attention to properties of Ve, the first order of business being to show
that it takes values in the category Repzp(G g). Our analysis of Vg rests on an analogue of
Lemma 3.2.6:

Lemma 3.2.7. For any M in @Mgtg, the Z,-module Vg(M) is finitely generated and the

natural @l-linear Gg-equivariant Frobenius-compatible map
O @z, Ve(M) = O3 @3, (0§ @5, M)?™" — O3 @, M

is an isomorphism. In particular, Vg(M) is exact in M, it has the same rank and invariant
factors as M, and its formation is naturally compatible with tensor products.

Proof. We will handle the case when M is a torsion object, and then the general case is
deduced from this by passage to inverse limits as in the proof of Lemma 3.2.6. Hence, we
assume that M is killed by p” for some r > 1, and we shall induct on r. The case r = 1
is the known case of étale p-modules over E that we worked out in the proof of Theorem
3.1.8. To carry out the induction, consider » > 1 such that the desired isomorphism result
is known in the general p"~!-torsion case. Letting M’ = p"~*M and M" = M/M’, we have
an exact sequence

0—-M —-M-—M"—0
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in @M;;; with M’ killed by p and M” killed by p"~!. Applying the flat scalar extension

O — 03" gives an exact sequence, and we just need to check that the resulting left-exact
sequence

of p-invariants is actually surjective on the right, for then we can do a diagram chase to infer
the desired isomorphism property for M from the settled cases of M’ and M” much like in
the proof of Lemma 3.2.6.

Consider the commutative diagram of exact sequences of Z,-modules

0—> 08 ®5, M' — 05" ®g, M —> 03" ©5, M —>0

| |+ =

0—= 05" @0, M — G @9, M — O ©5, M" —0

The kernels of the maps ¢ — 1 are the submodules of p-invariants, so the induced diagram of
kernels is the left-exact sequence that we wish to prove is short exact. Hence, by the snake
lemma it suffices to show that the cokernel along the left side vanishes. Since M’ is p-torsion,
the left vertical map is the self-map ¢ — 1 of E, ® g M’, and we just need to show that this
self-map is surjective. But M’ is an étale p-module over E, so our work in the p-torsion case
(see (3.1.1)) gives the Frobenius-compatible F,[Gg]-linear comparison isomorphism

E,®@g M' ~ E,®p, V'

with V' = Vg(M') € Repp, (Gg). Hence, the surjectivity problem is reduced to the surjec-
tivity of pp, —1: 2 +— a2 — x on Ej, which holds since Ej is separably closed. |

Returning to the proof of Theorem 3.2.5, as an immediate application of Lemma 3.2.7
we can prove that the Gg-action on the finitely generated Z,-module V¢(M) is continuous
(for the p-adic topology). It just has to be shown that the action is discrete (i.e., has open
stabilizers) modulo p™ for all n > 1, but the exactness in Lemma 3.2.7 gives V(M) /(p") ~
Ve (M/(p™)), so it suffices to treat the case when M is p™-torsion for some n > 1. In this case
V(M) is the space of p-invariants in @1 Rp, M = O /(") @0,y M, so it suffices to
prove that the Gg-action on 03" /(p™) has open stabilizers. Even the action on %" has open
stabilizers, since %" is the rising union of finite étale extensions 0y — O corresponding
to finite separable extensions E’/E inside of E, (with 0% /(p) = E’) and such a finite étale
extension is invariant by the action of the open subgroup Gp C G (as can be checked by
inspecting actions on the residue field). Thus, we have shown that Vs takes values in the
expected category Repy (Gk).

If we pass to Gg-invariants on the isomorphism in Lemma 3.2.7 then we get an Og-linear
Frobenius-compatible isomorphism

Dy(Ve(M)) = (0 ®,, M)CE

for any M € (IDMZ);. Let us now check that the target of this isomorphism is naturally

isomorphic to M via the Og-linear Frobenius-compatible map h : M — (@1 R, M)CE

defined by d — 1 ® d. It suffices to check the isomorphism property after the faithfully
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flat scalar extension Os — 5’(‘;?1 By Lemma 3.2.6 applied to .#Z := @1 ®e, M with
Os in the role of R there, the Og-module .#%# is finitely generated and the natural map
O Qp, M Ge — # is an isomorphism. But this isomorphism carries the scalar extension

@ ®e, h of h over to the identity map 5}‘? ®e, M = A . Hence, the scalar extension of
h is an isomorphism, so h is as well. This completes the verification that Ve and De are
naturally quasi-inverse functors.

It remains to check the behavior of Dgs and Ve with respect to duality functors. First
consider the full subcategories Repg (Gg)™" and @Mg};or of torsion objects, on which we use
the respective duality functors VY = Homg, (V,Q,/Z,) and M"Y = Homg,(M,&/0s). In
this torsion case the already established tensor compatibility of De gives a natural &s-linear
Frobenius-compatible map

De(V) @ De(VY) > Da(V @ VY) — D (Qp/ Zp),

where (i) we use the evaluation mapping Ve VY — Q,/Z, in the category of Z, |G g]-modules
and (ii) for any Z,[Gg]-module W (such as Q,,/Z,) we define Ds(W) = (@ ®z, W)Y as an
O s-module endowed with a (-semilinear Frobenius endomorphism via the Gg-equivariant
Frobenius endomorphism of @1 Clearly Dg(Q,/Z,) = (@/@)GE = (&™) 0™ and
the following lemma identifies this space of G g-invariants.

Lemma 3.2.8. The natural Frobenius-compatible map &/Cs — (" O2)CE is an isomor-
phism.

Proof. If we express &"™ /0" as the direct limit of its p™-torsion levels (3" - p~™) /03" for
n — oo, it suffices to prove the analogous claim for the p™-torsion level for each n > 1, and
using multiplication by p" converts this into the claim that Og/(p") — (0%/(p"))E is an
isomorphism for all n > 1. The injectivity is straightfoward, and the surjectivity was shown
in the proof of Lemma 3.2.4. [ |

By Lemma 3.2.8, we get a natural Og-linear Frobenius compatible map
(3.2.3) Dg(V) (029 Dg(VV) — éa/ﬁg

for V € Repzp(G £)™", so this in turn defines a natural @g-linear Frobenius-compatible
duality comparison morphism

We claim that this latter map in @M;;; is an isomorphism (or equivalently the @g-bilinear
&/ Og-valued duality pairing (3.2.3) is a perfect pairing), thereby expressing the natural
compatibility of Ds with respect to duality functors on torsion objects. To establish this
isomorphism property for torsion V', we observe that both sides of the duality comparison
morphism are exact functors in V', whence we can reduce the isomorphism problem to the
p-torsion case. But in this case our duality pairing is precisely the one constructed for Dg
in our study of étale p-modules over F in the proof of Theorem 3.1.8 (using the natural
Frobenius-compatible E-linear identification of (&/0g)[p] with E via the basis 1/p), and in
that earlier work we already established the perfectness of the duality pairing.
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In a similar manner we can establish the compatibility of Ve with duality functors on
torsion objects, by considering the functor

Ve M~ (0% @4, M)*="

from the category of 0¢-modules endowed with a ¢-semilinear endomorphism to the category
of Z,|Gg]-modules and verifying that

Vs(8/0s) = ()63 ~ Q,/Z,

via an analogue of Lemma 3.2.8. The details are left to the reader.

Finally, we consider the behavior with respect to duality on objects with finite free module
structures over Z, and 0. In this case we use the duality functors V¥ = Homz, (V,Z,) and
MY = Homg, (M, Og) (endowed with the evident G and Frobenius structures), and the
tensor compatibility enables us to define duality pairings similarly to the torsion case, now
resting on the identifications Dg(Z,) = Os and V(0s) = Z, from Lemma 3.2.4. We then
get morphisms

Ds(VY) = De(V)", Ve(M") — Vg(M)"
in @Mgtg and Repg (Gg) respectively which we want to prove are isomorphisms. In view
of the finite freeness of the underlying module structures it suffices to check that these are
isomorphisms modulo p, and the exactness of Vo and D, identifies these mod-p reductions
with the corresponding duality comparison morphisms from the p-torsion theory for V/pV €
Repg, (Gp) and M/pM € ®Mg. But we proved in our study of p-torsion objects that such
p-torsion duality comparison morphisms are isomorphisms. [ |

3.3. Q,-representations of Gz. We conclude our study of p-adic representations of G by
using our results for Repy (Gg) to describe the category Repg (Gg) in a similar Frobenius-
semilinear manner. Inspired by Lemma 1.2.6, the idea is that we should use finite-dimensional
&-vector spaces (equipped with suitable Frobenius semilinear automorphisms) rather than
finite free 0g-modules. However, we will see that there is a subtlety, namely that we need
to impose some integrality requirements on the Frobenius structure (whereas in the Galois
case the analogous integrality condition, the existence of a Galois-stable Z,-lattice, is always
automatically satisfied: Lemma 1.2.6). For clarity, we now write ¢4, to denote the Frobenius
endomorphism of ¢ and ¢¢ to denote the induced endomorphism of its fraction field & =
Og[1/p].

To motivate the correct definition of an étale p-module over &, consider V € Repq (GE)
and define the &-vector space

De(V) = (6™ ®q, V)"
equipped with the pg-semilinear endomorphism ¢p (v induced by the G g-equivariant Frobe-

nius endomorphism of & Tt may not be immediately evident if Dg (V) is finite-dimensional
over & or if its Frobenius structure &-linearizes to an isomorphism, but by Lemma 1.2.6 both
of these properties and more can be readily deduced from our work in the integral case:

Proposition 3.3.1. For V € Repq, (Gg) D := Dg(V) has finite &-dimension dimg D =
dimq, V, and the &-linearization ¢3(D) — D of pp is an isomorphism. Moreover, there is
a pp-stable Og-lattice L C D such that the Og-linearization gp*ﬁg(L) — L is an isomorphism.
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Proof. By Lemma 1.2.6, we have V = Q, ®z, A for A € Repz (GEg) that is finite free as a
Z,-module. Thus, from the definition we have

Ds(V) = De(M)[1/p] ~ & @4, De(A)

as &-vector spaces endowed with a ¢g-semilinear endomorphism. Since Dg(A) € M and

this is finite free as an &g-module with rank equal to rankgz, (A) = dimg,(V'), we are done
(take L = Dg(A)). |

Proposition 3.3.1 motivates the following definition.

Definition 3.3.2. An étale p-module over & is a finite-dimensional &-vector space D
equipped with a ¢g-semilinear endomorphism ¢p : D — D whose linearization ¢35 (D) — D
is an isomorphism and which admits a pp-stable Og-lattice L C D such that (L, ppl|r) €
dM 23 (i-e., the linearization ¢y, (L) — L induced by ¢p is an isomorphism). The category
of such pairs (D, ¢p) is denoted ®ME

The lattice L in Definition 3.3.2 is auxiliary data and is not at all canonical. In Definition
3.3.2 the existence of the ¢p-stable L € ®My Ct forces ¢p to &-linearize to an isomorphism,
but it seems more elegant to impose this latter étaleness property on ¢p before we mention
the hypothesis concerning the existence of the non-canonical L. Such Og-lattices L are
analogous to Galois-stable Z,-lattices in an object of Repq, (T") for a profinite group I': their
existence is a useful device in proofs, but they are not part of the intrinsic structure of
immediate interest.

Example 3.3.3. The naive definition one may have initially imagined for an étale p-module
over & is a finite-dimensional &-vector space D equipped with a pg-semilinear endomorphism
@p whose &-linearization is an isomorphism. However, this is insufficient for getting an
equivalence with Repg (Gr) because such objects (D, pp) can fail to admit a Frobenius-
stable (let alone étale) Og-lattice L as in Proposition 3.3.1. The problem is that the Frobenius
endomorphism ¢p can lack good integrality properties; there is no analogue of Lemma 1.2.6
on the Frobenius-semilinear module side.

To give a concrete example, let D = & and define ¢p = p~' - ps. In this case for any
nonzero r € D we have

-1, pe(x)

cpe(x)=p - T.

Since the multiplier pg(z)/x lies in &5, the additional factor of 1/p prevents ¢p(z) from
being an Og-multiple of x. The Og-lattices in & are precisely the Og-modules O - x for
x € &, so we conclude that there is no pp-stable Og-lattice L in D (let alone one whose
Frobenius endomorphism linearizes to a lattice isomorphism).

There is an evident functor ®Mg} — ®ME" given by L ~» L[1/p] = & ®¢, L, and
oty (L, L) [1/5] = Homguge (Z[1/o], L1/,

so ®ME is identified with the “isogeny category” of @Mgtg. In particular, ®MS' is abelian.
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Theorem 3.3.4. The functors Dg(V') := (ﬁ ®q, V)¥=! and V¢(D) := (ﬁ ®es D)CE are
rank-preserving exact quasi-inverse equivalences between Repr(G r) and ®ME that naturally
commute with the formation of tensor products and duals.

Proof. If A is a Gg-stable Z,-lattice in V' then we have seen that Dg(V) = Dg(A)[1/p], and
likewise if we choose (as we may by definition) an étale p-module L that is a Frobenius-
stable Og-lattice in a chosen D € ®ME then Vg(D) = Vg(L)[1/p]. Thus, everything
is immediately obtained by p-localization on our results comparing Repy (Gg) and @Mgtg
(using the full subcategories of objects with finite free module structures over Z, and 0z). W

3.4. Exercises.

Exercise 3.4.1. 1t is crucial to recognize that in the semilinear setting, matrices describing
maps have slightly twisted transformation laws (and so concepts like eigenvalue and charac-
teristic polynomial no longer make sense, though are useful for inspiration).

Let R be a ring equipped with an endomorphism ¢ : R — R. For any R-module M, let
¢*(M) = R ®¢r M be an R-module via the left tensor factor.

(1) A ¢-semilinear map T : M’ — M between two R-modules is an additive map such
that T(cm’) = ¢(c)T(m') for all m' € M and ¢ € R. Let Hom$(M’, M) denote the
set of these. Give it a natural R-module structure in two ways.

(2) Associated to any T' € Hom$(M’, M) is the R-linear map Ty, : ¢*(M') — M defined
by ¢ @ m' — I'(m'), called the linearization of T'. Show that linearization defines
an additive bijection Hom%(M’, M) ~ Hompg(¢*(M’), M). The natural R-module
structure on the target Hom-set matches one of the two on the source Hom-set.
Which one?

(3) Now suppose M’ and M are free R-modules of respective ranks d’,d > 1, Fix bases
e={e,...,ds} of M and & = {¢,,---¢,} of M'. For any T € Hom%(M’', M), the
associated matric o [T']e € Matyxa(R) is the matrix (c;;) defined via the conditions
T(e}) = »_;cijei. Show this defines a bijection Hom{(M', M) ~ Matgyq(R). The
R-module structure on matrices matches one of the two on Hom%(M’, M). Which
one? Also translate composition of ¢-semilinear maps into the language of matrices
(there is a ¢-twist in the formula).

(4) Continuing with the same notation, let ¢*(e’) be the R-basis {1 ® e;} of ¢*(M).
Show that o [1'e is exactly the usual matrix g«(e/)[Tiin]e associated to the linearization
(relative to the corresponding bases).

(5) Let £ = {f1,..., fa} and ' = {f],..., f}} be other choices of bases, and let A =
¢[idar]e and A" = ¢[idpy]er. Double check that these are the “change of basis matrices”
converting e-coordinates into f-coordinates and e€’-coordinates into f’-coordinates
(not the other way around).

Prove the following twisted version of the usual transformation law:

¢[T]e = Ae[T]erp(A),

where by ¢(A’) we mean the matrix obtained by applying ¢ to all matrix entries.
Explain by pure thought why the ¢ appears where it does in this formula. In the
special case M’ = M, € = e, and f’ = f, explain why concepts such as characteristic
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polynomial, trace, and determinant generally make no sense when ¢ # idg. (Example
8.1.3 gives an especially nice example in characteristic 0.) Show that the element
det(o[T]e) € R is well-defined up to multiplication by u/¢(u) for u € R*.

(6) Now take R = F = k((u)) with k a perfect field of characteristic p > 0 (so R* =
E* # k[u]), and let (M, par) be a p-module of dimension d over E. Using suitable
u-power multiplications on an initial choice of basis, show that there is always a basis
such that the associated matrix of ¢y, lies in Maty(k[u]); that is, there is always
a p-stable k[u]-lattice in M. Assuming ¢y # 0, find another basis for which the
matrix does not lie in Maty(k[u]).

Exercise 3.4.2. Let E be a field of characteristic p > 0, and M, an étale p-module over E.
Prove that ¢py @ My — My is the pp-semilinear map whose E-linearization is the
isomorphism

P(My) =~ (p3p(Mo))" ~ My

with the final isomorphism defined to be inverse to the linear dual of the E-linear isomorphism
o (My) ~ My induced by linearization of ¢y, .

Ezercise 3.4.3. Let E be a field of characteristic p > 0 and fix an associated pair (Og, )
consisting of a Cohen ring for £ and a Frobenius lift. Consider Fontaine’s equivalence
Repy (Gg) ~ @Mgiﬁ between p-adic representations of G over Z, and étale p-modules
over Ug. Let E'/E be a separable algebraic extension inside of Ej, and let (Og, ¢’) be the
canonically associated pair over (O, p).

(1) The restriction functor Resgg : Repy, (Gr) — Repg, (Gpr) translates into a functor
MG — CI)M%,. Prove it is completed extension of scalars: D ~» Ox®4, D with
the associated diagonal Frobenius operator (which is still étale).

(2) Assume E'/FE'is finite. The induction functor Repz (Gr) — Repg (Gg) is defined as
follows: Indgg (V') is the set of functions f : Gg — V' which “transform according to
the Gg-action on V’; that is, f(¢'g) = ¢'.f(g) for all g € Gg and ¢’ € Gg/. The Gg-
action is defined to be (g.f)(x) = f(zg) (so indeed g.f € Indg;(\/’) and f — g.fisa
left Gg-action). There is a natural Z,[G g/]-module map ny- : Resgglndgg (V) =V’
via f +— f(1). Prove that the resulting composite

HomZP[GE] (V’ Indg; (V,)) - HomZP[GE'} (Resgg (V)> V/)

via T +— ny o Resgg (T') is bijective, so induction is right adjoint to restriction.

Interpret induction in terms of étale p-modules. Watch out for the variances of the
functors! What if we work with the alternative construction V' ~ Z,[Gg| ®z,c,_ 1 V'
(in the spirit of compact induction)?

Exercise 3.4.4. Why is Example 3.3.3 not inconsistent with the existence of yp-stable lattices
in the setting of Exercise 3.4.1(6)? (That is, why does the solution of that exercise not apply
to Example 3.3.37)
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4. BETTER RING-THEORETIC CONSTRUCTIONS

4.1. From gradings to filtrations. The ring Byt provides a convenient mechanism for
working with Hodge—Tate representations, but the Hodge—Tate condition on a p-adic repre-
sentation of the Galois group Gi of a p-adic field K is too weak to be really useful. What we
seek is a class of p-adic representations that is broad enough to include the representations
arising from algebraic geometry but also small enough to permit the existence of an equiv-
alence of categories with (or at least a fully faithful exact tensor functor to) a category of
semilinear algebra objects. Based on our experience with Hodge-Tate representations and
étale p-modules, we can expect that on the semilinear algebra side we will need to work with
modules admitting some kind of structures like Frobenius endomorphisms and gradings (or
filtrations). We also want the functor relating our “good” p-adic representations of Gk to
semilinear algebra to be defined by a period ring that is “better” than Byt and allows us
to recover Byt (i.e., whatever class of good representations we study should at least be of
Hodge-Tate type).

The ring Bur = ©,Ck(q) is a graded Cg-algebra endowed with a compatible semilinear
G -action. In view of the isomorphism (2.4.6) in Grg, the grading on Byt is closely related
to the grading on the Hodge cohomology Hy, g, (X) = @©pyq=nHP (X, Q% / ) for smooth proper
K-schemes X. To motivate how we should refine By, we can get a clue from the refinement
of Hfj,qee(X) given by the algebraic de Rham cohomology Hjg (X/K). This is not the place
to enter into the definition of algebraic de Rham cohomology, but it is instructive to record
some of its properties.

For any proper scheme X over any field k£ whatsoever, the algebraic de Rham cohomologies
H"(X) = Hjjz (X/k) are finite-dimensional k-vector spaces endowed with a natural decreasing
(Hodge) filtration

H*(X) = Fil°’(H"(X)) D Fil'(H"(X)) D --- D Fil"™(H"(X)) = 0
by k-subspaces and Fil?(H"(X))/Fil?™ (H"(X)) is naturally a subquotient of H*~9(X Qfﬁ(/k),
with a natural equality

Fil? (H" (X)) /Fil"™ (H"(X)) = H"(X, Q% )

if char(k) = 0.

Definition 4.1.1. A filtered module over a commutative ring R is an R-module M endowed
with a collection {Fil’ M},cz of submodules that is decreasing in the sense that Fil'** (A1) C
Fil'(M) for all i € Z. If UFil'(M) = M then the filtration is ezhaustive and if NFil'(M) = 0
then the filtration is separated. For any filtered R-module M, the associated graded module
is gr*(M) = @;(Fil'(M)/ Fil'*1(M)).

A filtered ring is a ring R equipped with an exhaustive and separated filtration { R’} by
additive subgroups such that 1 € R® and R'- R/ C R for all i,j € Z. (In particular,
RY is a subring of R and each R’ is an R%-submodule of R.) The associated graded ring is
gr*(R) = @; R'/R™L. If k is a ring then a filtered k-algebra is a k-algebra A equipped with
a structure of filtered ring such that the filtered pieces A® are k-submodules of A, and the
associated graded k-algebra is gr*(A) = @; A* /AL
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Example 4.1.2. Let R be a discrete valuation ring with maximal ideal m and residue field
k, and let A = Frac(R). There is a natural structure of filtered ring on A via A* = m’ for
i € Z. In this case the associated graded ring gr*(A) is a k-algebra that is non-canonically
isomorphic to a Laurent polynomial ring k:[t 1/t] upon choosing a k-basis of m/m?. Note

that canonically gr*(A) = gr*(A), where A denotes the fraction field of the completion R of
R.

For a smooth proper C-scheme X, Grothendieck constructed a natural C-linear isomor-
phism Hj(X/C) ~ C ®q Hf,,(X(C),Q). Complex conjugation on the left tensor factor
of the target defines a conjugate-linear automorphism v — v of Hj, (X/C), and by Hodge
theory this determines a canonical splitting of the Hodge filtration on Hj, (X/C) via the
C-subspaces H"™%4 := Fn=4 N F4 where F7/ = Fil/(Hix(X/C)); i.e., H" %9 ~ [/t for
all ¢, so F7 = @,>;H" %%, Moreover, in Hodge theory one constructs a natural isomorphism
H" 91 ~ H* (X, Q% /C). In particular, complex conjugation gives rise to a canonical split-
ting of the Hodge filtration when the ground field is C. This splitting rests on algebraic
topology and complex conjugation on C.

In the general algebraic case over an arbitrary field k£ of characteristic 0, the best one
has canonically is that for any smooth proper k-scheme X, the k-vector space Hjy(X/k)
is naturally endowed with an exhaustive and separated filtration whose associated graded
vector space

gr* (Hip (X/k)) := @D Fil' (Hip (X/k)) /Fil™ (Hjg (X/k))
q
is the Hodge cohomology @,H"~(X, Q% /k) of X. This filtration generally does not admit a
functorial splitting.

A natural idea for improving Faltings’ comparison isomorphism (2.4.6) between p-adic
étale and graded Hodge cohomology via By is to replace the graded Cg-algebra Byt with
a filtered K-algebra Byr endowed with a G k-action respecting the filtration such that (i) Bar
is (Q,, Gk )-regular, with BSX = K, (i) Fil®( Byr) /Fil' (Bar) ~ Ck as rings with G g-action,
and (iii) there is a canonical Gg-equivariant isomorphism gr®(Bgr) ~ Byt as graded Cg-
algebras. Given such a Bgg, consider the associated functor Dar (V) = (Bar ®q, V)&% on
Repq, (G'x) with values in finite-dimensional K-vector spaces. This has a functorial filtration
via Fil'(Dar (V) = (Fil'(Bar) ®q, V)%, and it is exhaustive and separated since the same
holds for the filtration on Bgqr (by the definition of a filtered ring). By left-exactness of
()%, there is an evident natural injective map

gr*(Dar(V)) <= (gr*(Bar) ®q, V) = (Bur ®q, V)% = Duz(V)
of graded K-vector spaces, so if V' is Bggr-admissible then
diHIQp V= dlmK DdR(V) = dlmK gr'(DdR(V)) < dlmK DHT(V) < diHIQp V,

so V' is necessarily Hodge—Tate. In this sense, any such Dgg is a finer invariant than Dyr.
A serious test of a good definition for Bgg is that it should lead to a refinement of Faltings’
comparison theorem between p-adic étale and Hodge cohomology, by using de Rham coho-
mology instead. That is, for smooth proper X over K the p-adic representations Hf, (X«, Q,)
should be Bggr-admissible with a natural isomorphism Dgr(HZ (X%, Qp)) ~ Hig(X/K)
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whose induced isomorphism between associated graded K-vector spaces is Faltings’ com-
parison isomorphism between p-adic étale and Hodge cohomologies.

Inspired by Example 4.1.2 and the description Bt =~ Cg[T,T~!'], we are led to seek a
complete discrete valuation ring Bi; over K (with maximal ideal denoted m) endowed with
a G g-action such that the residue field is naturally G g-equivariantly isomorphic to Cx and
the Zariski cotangent space m/m? is naturally isomorphic to Cg (1) in Repg, (Gk). Since
there is a canonical isomorphism m’/m*** ~ (m/m?)®" in Repg, (Gk) for all i € Z, for the
fraction field Bgr of such a ring BIR we would then canonically have gr*(Byr) ~ Bpur as
graded Cg-algebras with G g-action.

Ezample 4.1.3. A naive guess is to take Byz = [],59 Cx(q) =~ Ck[t] with G k-action given
by (> a,t™) = > glan)x(g)"t". This does not lead to new concepts refining the theory
of Hodge—Tate representations since the product decomposition canonically defines a G k-
equivariant splitting of the filtration on m’/m’ for any 4,j € Z with j > 7. In other words,
for such a choice of complete discrete valuation ring the filtration is too closely related
to a grading to give anything interesting (beyond what we already get from the Hodge—
Tate theory). More specifically, with such a definition we would get Dggr = Dyr (with
canonically split filtration), so there could not be any comparison isomorphism obtained in
this way between p-adic étale and de Rham cohomolgies, as the filtration on the latter is not
functorially split.

A more promising idea is to imitate the procedure in commutative algebra whereby for
perfect fields k of characteristic p > 0 there is a functorially associated complete discrete
valuation ring W (k) (of Witt vectors) that has uniformizer p and residue field k. (See §4.2.) A
big difference is that now we want to functorially build a complete discrete valuation ring with
residue field C of characteristic 0 (and we will not expect to have a canonical uniformizer).
Thus, we cannot use a naive Witt construction (as in §4.2). Nonetheless, we shall see that an
artful application of Witt-style ideas will give rise to the right equicharacteristic-0 complete
discrete valuation ring Bj; for our purposes (and though any complete discrete valuation
ring with residue field F' of characteristic 0 is abstractly isomorphic to F'[t] by commutative
algebra, such a structure will not exist for Bj; in a Gg-equivariant manner).

Remark 4.1.4. We should emphasize at the outset that By will differ from [ ., Cx(q) (as
complete discrete valuation rings with G'x-action and residue field Cg) in at least two key
respects. First, as we just noted, there will be no Gx-equivariant ring-theoretic section to
the reduction map from Bj; onto its residue field Ck. Second, even the quotient Bjy/m?
as an extension of Cx by Cg(1) will have no Gk-equivariant additive splitting. (This is
not inconsistent with Example 2.2.6 because B, /m? does not admit a G g-equivariant C-
structure as required there.)

Roughly speaking, the idea behind the construction of Bjy is as follows. Rather than
try to directly make a canonical complete discrete valuation ring with residue field Cg, we
observe that Cr = Oc,[1/p] with Oc, = lim Oc, /(p") = lim O%/(p") closely related to
p-power torsion rings. Hence, it is more promising to try to adapt Witt-style constructions
for O¢,, than for Cx. We will make a certain height-1 valuation ring R of equicharacteristic
p whose fraction field Frac(R) is algebraically closed (hence perfect) such that there is a
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natural Gg-action on R and a natural surjective G g-equivariant map
0 : W(R) - ﬁCK-

(Note that W(R) € W(Frac(R)), so W(R) is a domain of characteristic 0.) We would
then get a surjective G g-equivariant map g : W(R)[1/p] - Oc,[1/p] = Ck. Since R is
like a 1-dimensional ring, W(R) is like a 2-dimensional ring and so W(R)[1/p] is like a 1-
dimensional ring. The ring structure of W(A) is generally pretty bad if A is not a perfect field
of characteristic p, but as long as the maximal ideal ker fq is principal and nonzero we can
replace W(R)[1/p] with its ker fq-adic completion to obtain a canonical complete discrete
valuation ring Bj; having residue field Cg (and it will satisfy all of the other properties that
we shall require).

4.2. Witt vectors and universal Witt constructions. Let k be a finite field of charac-
teristic p and let A be the valuation ring of the finite unramified extension of Z, with residue
field k. Let [-] : K — A be the multiplicative Teichmiiller lifting (carrying 0 to 0 and sending
k> isomorphically onto p,—1(A) with ¢ = #k), so every element a € A admits a unique
expansion a = Y ~o[c,]p" with ¢, € k. For any such @ € A and o’ = }_ [ ]p" € A, it is
natural to ask if we can compute the Teichmiiller expansions of a + a’ and aa’ by “universal
formulas” (independent of k beyond the specification of the characteristic as p) involving
only algebraic operations over F,, on the sequences {¢,} and {¢,} in k. Since A is functori-
ally determined by k it is not unreasonable to seek this kind of reconstruction of A in such
a direct manner in terms of k.

One can work out such formulas in some low-degree Teichmiiller coefficients, and then
it becomes apparent that what really matters about %k is not its finiteness but rather its
perfectness. Rather than give a self-contained complete development of Witt vectors from
scratch, we refer the reader to [44, Ch. II, §4-§6] for such a development. Some aspects of
this theory will be reviewed below as necessary, but we assume that the reader has some
previous experience with the ring of Witt vectors W(A) for an arbitrary commutative ring
A (not just for F,-algebras A).

Let A be a perfect F-algebra (i.e., an F,-algebra for which a — a” is an automorphism
of A). Observe that the additive multiplication map p : W(A) — W(A) is given by (a;) —
(0,ap,al,...), so it is injective and the subset p" W(A) C W(A) consists of Witt vectors
(a;) such that ag = -+ = a,_1 = 0 since A is perfect, so we naturally have W(A)/(p") ~
W,.(A) by projection to the first n Witt components. Hence, the natural map W(A) —
lim W(A)/(p") is an isomorphism. Thus, W(A) for perfect F,-algebras A is a strict p-ring
in the sense of the following definition.

Definition 4.2.1. A p-ring is a ring B that is separated and complete for the topology
defined by a specified decreasing collection of ideals by D by O ... such that b,b,, C b,
for all n,m > 1 and B/b; is a perfect F,-algebra (so p € by).

We say that B is a strict p-ring if moreover b; = p'B for all i > 1 (i.e., B is p-adically
separated and complete with B/pB a perfect F,-algebra) and p : B — B is injective.

In addition to W(A) being a strict p-ring for perfect F,-algebras A, a wide class of (gen-
erally non-strict) p-rings is given by complete local noetherian rings with a perfect residue
field of characteristic p > 0 (taking b; to be the ith power of the maximal ideal).
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Lemma 4.2.2. Let B be a p-ring. There is a unique set-theoretic section rg : B/by — B to
the reduction map such that rg(z?) = rg(x)P for allx € B/by. Moreover, rp is multiplicative
and rg(l) = 1.

Proof. This proceeds by the same method as used in the development of the theory of Witt
vectors, as follows. By perfectness of the F,-algebra B/b;, we can make sense of z " for

all x € B/by and all n > 1. For any choice of lift 27" € B of 2P ", the sequence of

7Ll —n

——pn /\/p
powers P~ " is Cauchy for the b;-adic topology. Indeed, for n’ > n we have axP™" =
— — =t N
2P~" mod by, so raising to the p"-power gives zP~" = P mod (pb?, b} ) since in general

if y = v’ mod J for an ideal J in a ring R with p € J (such as J = b; in R = B) then
y?" = y'"" mod (pJ™, JP") for all n > 1. Since b C b; for all i > 1 and B is assumed to be
separated and complete for the topology defined by the b;’s, there is a well-defined limit

—pn

rg(z) = lim zp°" € B

n—oo

relative to this topology. Obviously rg(zP) = rg(x)P. If we make another choice of lifting

—_— — —_— — —ph

aP~" then the congruence zP " = aP " mod b; implies = 2 mod (pb?, 62" for
all n > 1, whence the limit 75(z) constructed using these other liftings satisfies rg(x) =
rp(z) mod b, for all n > 1, so 7p(z) = rp(z). In other words, rz(x) is independent of the
choice of liftings xP™".

In particular, if/@; is a p-power compatible section as in the statement of the lemma then
we could choose 2P™" = pg(xP™") for all n > 1 in the construction of rz(z), so

—pn

w = pp((” ")) = pp(2).

Passing to the limit gives rg(x) = pp(x). This proves the uniqueness in the lemma, so it
remains to check that rp is multiplicative and rg(1) = 1. The latter condition follows from

—n

the construction, and for the multiplicativity we observe that (xy)?™" can be chosen to be
re(xP” " )rp(y?") in the construction of rz(xy), so passing to p"-powers and then to the limit
gives rg(x)rp(y) = rp(zy). [

An immediate consequence of this lemma is that in a strict p-ring B endowed with the
p-adic topology (relative to which it is separated and complete), each element b € B has the
unique form b =" - r5(b,)p" with b, € B/by = B/pB. This leads to the following useful
universal property of certain Witt rings.

Proposition 4.2.3. If A is a perfect Fy-algebra and B is a p-ring, then the natural “reduc-
tion” map Hom(W(A), B) — Hom(A, B/by) (which makes sense since A = W(A)/(p) and
p € by) is bijective. More generally, for any strict p-ring A, the natural map

Hom(4, B) — Hom(4/(p), B/b1)

is bijective for every p-ring B.
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In particular, since B and W(AB/(p)) satisfy the same universal property in the category
of p-rings for any strict p-ring A, strict p-rings are precisely the rings of the form W(A) for
perfect Fp-algebras A.

Proof. Elements § € % have the unique form 5 = > 7r4(8,)p" for 5, € %/(p). By
construction, the multiplicative sections rp and ry are functorial with respect to any ring
map h : 8 — B and the associated reduction h : £/(p) — B/by, so

h(B) =Y h(rs(B))p" = > ra(h(B.))p",

whence h is uniquely determined by h. To go in reverse and lift ring maps, we have to show
that if h : #/(p) — B/b; is a given ring map then the map of sets 8 — B defined by

ﬂ = Z T@(ﬂn)Z)n = Z TB(E(ﬂn»pn
is a ring map. This map respects multiplicative identity elements, so we have to check
additivity and multiplicativity. For this it suffices to prove quite generally that in an arbitrary
p-ring C the ring structure on a pair of elements ¢ = >_ro(c? " )p™ and ¢ = re(c,? Hpn
with sequences {c,} and {c,} in C/¢; is given by formulas

c+d = Z T (Sn(Coy - -y Cn; s PP, ed = Zrc(Pn(co, G Chy )P )P

for universal polynomials S,,, P, € Z[Xo, ..., Xn; Yy, ..., Y,]. In fact, we can take S, and P,
to be the universal nth Witt addition and multiplication polynomials in the theory of Witt
vectors. The validity of such universal formulas is proved by the same arguments as in the
proof of uniqueness of such Witt polynomials. [ |

Let us give two important applications of Proposition 4.2.3. First of all, for a p-adic field
K with (perfect) residue field k we recover the theory of its maximal unramified subex-
tension. Indeed, since Ok endowed with the filtration by powers {m'};>; of its maximal
ideal m is a p-ring, there is a unique map of rings W(k) — O lifting the identification
W(k)/(p) = k = Ok /m. Since p has nonzero image in the maximal ideal m of the domain
Ok, this map W(k) — O is local and injective. Moreover, Ok /(p) is thereby a vector
space over W(k)/(p) = k with basis {1,7,..., 7'} for a uniformizer 7= and e = ordg(p),
so by successive approximation and p-adic completeness and separatedness of Ok it follows
that {7 }ocice is a W(k)-basis of 0. In particular, O is a finite free module over W (k) of
rank e, so likewise K = Ok[1/p| is a finite extension of Ky = W(k)[1/p] of degree e, and it
must be totally ramified as such since the residue fields coincide. We call Ky the maximal
unramified subfield of K, and for finite k£ this coincides with the classical notion that goes
by the same name.

Remark 4.2.4. Let k denote the algebraic closure of k given by the residue field of O.

Although @ is not p-adically complete — so we cannot generally embed W (k) into &% —
the (non-noetherian) valuation ring Og, is p-adically separated and complete and there is
a canonical local embedding W(k) — Oc,.. However, this is not directly constructed by the
general formalism of p-rings since no quotient of &¢, modulo a proper ideal containing p
is a perfect Fj-algebra. Rather, since Ky C K with [K : Ky < oo, we have Cx = Ck,

and W (k) is the valuation ring of the completion @ of the maximal unramified extension
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of Ky (with residue field k). In particular, &%/(p) = Ocy/(p) is not only an algebra over
W(k)/(p) = k in a canonical manner, but also over W(k)/(p) = k (as can also be proved by
other methods, such as Hensel’s lemma).

For a second application of Proposition 4.2.3, we require some preparations. If A is any
F,-algebra whatsoever (e.g., A = O%/(p)) then we can construct a canonically associated
perfect F,-algebra R(A) as follows:

(4.2.1) R(A) = lim A= {(z0,21,...) € [[A| ¥, = a; for all i}

x'—n’cp n=0

with the product ring structure. This is perfect because the additive pth power map on
R(A) is surjective by construction and is injective since if (z;) € R(A) satisfies (z;)? = (0)
then 2,1 =2 =0 for all i > 1 (so (z;) = 0). In terms of universal properties, observe that
the map R(A) — A defined by (x;) — z is a map to A from a perfect F,-algebra, and this
is final among all maps to A from perfect F,-algebras. The functoriality of R(A) in A is
exhibited in the evident manner in terms of compatible p-power sequences.

Ezxample 4.2.5. If A is a perfect Fp-algebra then the canonical map R(A) — A is an isomor-
phism (as follows by inspection in such cases), and the inverse map is explicitly given by
a— (a,a/? a/?* ).

If F'is any field of characteristic p, then R(F') is the largest perfect subfield of F'. For
example, R(F,(z)) =F,.

We will be particularly interested in the perfect F,-algebra

R:= R(O/(p)) = R(Ocy/(p))

endowed with its natural G'r-action via functoriality. Since &%/(p) is canonically an algebra
over the perfect field k, likewise by functoriality we have a ring map

(4.2.2) k=R(k) — R(0g/(p) = R
described concretely by
(4.2.3) e (j(e), 5(e7), 5 (), )

where j : k — 0%/ (p) is the canonical (even unique) k-algebra section to the reduction map
Ow/(p) — k. Although O, is p-adically separated and complete, O, /(p) is not perfect. If
we ignore this for a moment, then the canonical G g-equivariant map R — Oc,. /(p) defined
by (x,) — o would uniquely lift to a ring map

0: W(R) — Oc,

due to the universal property of W(R) in Proposition 4.2.3. It will later be shown how
to actually construct a canonical such Gi-equivariant surjection 6 despite the fact that we
actually cannot apply Proposition 4.2.3 in this way (due to O¢, /(p) not being perfect).
The induced G g-equivariant surjection W(R)[1/p] — Ck via 6 then solves our original
motivating problem of expressing Cx as a G g-equivariant quotient of a “one-dimensional”
ring, and further work will enable us to replace W(R)[1/p] with a canonical complete discrete
valuation ring.
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To proceed further (e.g., to prove that R is a valuation ring with algebraically closed
fraction field and to actually construct € as above), it is necessary to investigate the properties
of the ring R. This is taken up in the next section.

4.3. Properties of R. Although R = R(0c¢, /(p)) for a p-adic field K is defined ring-
theoretically in characteristic p as a ring of p-power compatible sequences, it is important
that such sequences can be uniquely lifted to p-power compatible sequences in ¢, (but
possibly not in O0%). This lifting process behaves well with respect to multiplication in R,
but it expresses the additive structure of R in a slightly complicated manner. To explain
how this lifting works, it is convenient to work more generally with any p-adically separated
and complete ring (e.g., Oc, but not O).

Proposition 4.3.1. Let O be a p-adically separated and complete ring, and let a C O be
an ideal containing pO such that a C pO for some N > 0 (i.e., the a-adic and p-adic
topologies on O coincide). The multiplicative map of sets
(4.3.1) lim & — R(C/a)
defined by (z),>0 +— (2™ mod a) is bijective. Also, for any v = (v,) € R(C/a) and
arbitrary lifts T, € O of x, € O/a for all v > 0, the limit £, (x) = lim,, x/n+\mpm exists in
O for all n > 0 and is independent of the choice of lifts Z,.. Moreover, the inverse to (4.3.1)
is given by x — (£, (x)).

In particular, R(O/p0) — R(O/a) is an isomorphism, and this common ring is a domain
if O is a domain.

Proof. The given map of sets lim & — R(&/a) makes sense and is multiplicative, and to
make sense of the proposed inverse map we observe that for each n > 0 and m’ > m > 0 we
have

77Ll —m

/\p _ ———
Ln+m/ = Tn+m mod pﬁ,
/
—_— m —_— m . .
SO Tppm! = Tnim  mod p™+1@. Hence, the limit £, (z) makes sense for each n > 0, and

the same argument as in the proof of Lemma 4.2.2 shows that ¢, (x) is independent of the
choice of liftings Z,. The proposed inverse map x +— (¢, (z)) is therefore well-defined, and in
view of it being independent of the liftings we see that it is indeed an inverse map. |

In what follows, for any € R(€/a) = R(€ /p0) as in Proposition 4.3.1 we write 2" € €
to denote the limit £,,(2) = limy, oo T " for all n > 0.
Remark 4.3.2. The bijection in Proposition 4.3.1 allows us to transfer the natural F,-algebra
structure on R(&/a) over to such a structure on the inverse limit set lim & of p-power
compatible sequences x = (x("))@o in ¢. The multiplicative structure translate through
this bijection as (zy)™ = ™y For addition, the proof of the proposition gives
(

z+y)"™ = lim ("t 4y ntm)yp™

Also, if p is odd then (—1)? = —1 in @, so (—2™) is a p-power compatible sequence for any
x. Hence, from the description of the additive structure we see that (—z)™ = —z® for all
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n > 0 and all  when p # 2. This argument fails to work if p = 2, but then (—2)®™ = (™
for all n > 0 since —x = x in such cases (as R(0/a) is an Fy-algebra if p = 2).

We now fix a p-adic field K and let R denote the perfect domain R(0%/(p)) = R(Oc,./(p))
of characteristic p. An element x € R will be denoted (z,),>0 when we wish to view its
p-power compatible components as elements of Oc,. /(p) and we use the notation (z(™),>o
to denote its unique representation using a p-power compatible sequence of elements z(™ €
Oc,- An element x € R is a unit if and only if the component zy € O%/(p) is a unit, so R
is a local ring. Also, since every element of 0% is a square, it follows (e.g., via Proposition
4.3.1) that the nonzero maximal ideal m of R satisfies m = m?. In particular, R is not
noetherian. The ring R has several non-obvious properties which are used throughout the
development of p-adic Hodge theory, and the remainder of this section is devoted to stating
and proving these properties.

Lemma 4.3.3. Let |- |, : Cx — pQ U {0} be the normalized absolute value satisfying
Ipl, = 1/p. The map ||z : R — pRU{0} defined by v = (2™) — 20|, is a G -equivariant
absolute value on R that makes R the valuation ring for the unique valuation vg on Frac(R)
extending —log, | - |[r on R (and having value group Q).

Also, R is vg-adically separated and complete, and the subfield k of R maps isomorphically
onto the residue field of R.

Proof. Obviously (¥ = 0 if and only if x = 0, and |2y|g = |7|r|y|r since (zy)@ = 2@y,
To show that |z + y|r < max(|z|g, |y|r) for all z,y € R, we may assume z,y # 0, so
7@ y© o£ 0. By symmetry we may assume |z(?], < |y(©],, so for all n > 0 we have

n

2, = [0 < O = 1y,

The ratios z(™ /y(™ therefore lie in O¢,, for n > 0 and form a p-power compatible sequence.
This sequence is therefore an element z € R, and yz = x in R so y|z in R. Hence,

v +ylr = ly(z + 1)|r = |y|rlz + 1|r < |y|r < max(|z|g, |y|r).

The same argument shows that R is the valuation ring of vg on Frac(R).

To prove | - |g-completeness of R, first note that if we let v = —log, |- [, on Cg then
vr(z) = v(x®) = pro(z™) for n > 0. Thus, vg(z) = p” if and only if v(z™) > 1 if and
only if 2™ mod p = 0. Hence, if we let

0,:R— Oc,/(p)

denote the ring homomorphism =z = (2,,,)m>0 — =, then {z € R|vg(x) > p"} = ker6,.
In view of how the inverse limit R sits within the product space [],,-(0c,/(p)), or more
specifically since x,, = 0 implies z,,, = 0 for all m < n, we conclude that the vg-adic topology
on R coincides with its subspace topology within [, -,(0c, /(p)) where the factors are given
the discrete topology, so the vg-adic completeness follows (as R is closed in this product space
due to the definition of R = R(Oc¢,./(p))).

Finally, the definition of the k-embedding of k into R in (4.2.2) implies that 6y : R —»
Oc,. /(p) is a k-algebra map, but 6 is local and so induces an injection on residue fields.
Since k — Oc,./(p) induces an isomorphism on residue fields, we are done. [ ]
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For # = (™) and y = (y™) in R, we have 2™ = y™ mod p if and only if () =
y® mod p"~**! for all 0 < i < n, so the vg-adic topology on R also coincides with its closed
subspace topology from sitting as a multiplicative inverse limit within Hn>0 Oc,. where each
factor is given the p-adic topology. This gives an alternative way of seeing the wvg-adic
completeness of R.

Ezxample 4.3.4. An important example of an element of R is

€= (8("))n>0 = (1,¢p, Gp2o - - +)

with ¢ =1 but e # 1 (so e = ¢, is a primitive pth root of unity and hence ™ is a
primitive p"th root of unity for all n > 0). Any two such elements are ZX-powers of each
other. For any such choice of element we claim that
p
— =
vr(e —1) p—1
To see this, by definition we have vg(e — 1) = v((e — 1)) where v = ord, = —log,, | - |,,
so we need to describe (¢ — 1) € O¢,,. By Remark 4.3.2, in 0¢,, we have

(e = 1)@ = lim (™ + (=1)™)P",

with ¢ = (,n a primitive p"th root of unity in K and (—1)™ = —1 if p # 2 whereas
(—=1)™ =1 if p = 2. We shall separately treat the cases of odd p and p = 2.
If p is odd then

'

(e 1) = fim g7 ordy (G —1) = Jim gy = Do

If p =2 then
vr(e —1) = lim 2" ordy((en + 1) = lim 2" orda(((on — 1) + 2).

Since orda(Con — 1) = 1/2"71 < ordy(2) for n > 1, we have ords((Can — 1) +2) = ordy(an — 1)
for n > 1, so we may conclude as for odd p.

Theorem 4.3.5. The field Frac(R) of characteristic p is algebraically closed.

Proof. Since R is a valuation ring, it suffices to construct a root in R for any monic polynomial
f € R[X] with d = deg P > 0. We may and do assume d > 2.

For each m > 1, consider the ring map 6,,, : R — Oc¢,. /(p) defined by = = (x;) — x,,. Let
fm =0 (f) € (Oc,./(p))[X] (apply 0., to coefficients). This is a monic polynomial of degree
d, so it lifts to a monic polynomial f,, € Oc¢, [X] of degree d. Since O, is the valuation
ring of the field Cg that is algebraically closed (Proposition 2.1.1), f,, admits a set of d
roots (with multiplicity) {p1m, .-, pdam} in Ocy. The reductions p, ,, of these modulo p are
roots of f,, = 0,,(f), and if we could arrange a p-power compatible sequence of these as
m — oo we could get the desired root of f in R = lim Oc, /(p). Since the p-power map on
Oc,. /(p) is a ring homomorphism carrying the map 6,,41 to the map 6, (by the definition
of R), the p-powers 7y, ., are roots of f,,. The problem is that Oc, /(p) is not a domain,
and so f,, always has infinitely many roots. In particular, the p; ,,’s are not the only roots
of f,,, so we cannot conclude that every /_)’;m 1 18 equal to some p; .. If we did have such a
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conclusion then the sets {p;,,}1<i<a Would form an inverse system of non-empty finite sets
via the p-power map, so there would have to be a compatible system via the pigeonhole
principle and hence we would get the root we seek.

To circumvent the infinitude of roots, we use a nice trick observed by Coleman. The key
point is that the p, ,,’s are not merely roots of f,, but are actually reductions of roots from
Oc, , where finiteness for the set of roots does hold. We will exploit a big p-power mapping
to transfer this property to characteristic p, as follows. Since f, m(ﬁfm_i_l) Jns1 (P my1)? =0

in Oc,. /(p), we have fm(pfmﬂ) € pOc,, for each 1 <i < d. But f, = [1;(X = pjm), so for
each i we have [[,(0},,11 — pjm) € POcy. There are d terms in the product, so at least one
of them, say o}, .1 — Pj(i)m, lies in p'/?0¢,.. In other words, for each 1 < i < d there exists
1 < j(i) < d such that pf . = pj@),m mod pY/40c,.. By a straightforward calculation, any
congruence a = b mod pr/dﬁc with 1 < r < d implies a? = ¥ mod pr+1) /dﬁc Applying
this repeatedly, we conclude that pﬁmﬂ = p‘;(i)vm mod pOg, . In other words, pme pp(Z e

Hence, the finite sets
d—1

(P P}

do form a compatible system under the p-power maps. These p?~'-powers of roots of f,,41
d—1
are roots of fr11-(a—1) = fin—dt2. In other words, if we define z;,, = me+d 5 € Oc,/(p)

for m > 0 and 1 < i < d (which makes sense even for m = 0 since we arranged that
d > 2), then the non-empty finite sets {1, ..., Zam} for m > 0 form an inverse system
under the p-power mapplng By the pigeonhole prln(nple we may therefore select (), for
each m > 0 such that xz(mﬂ) mi1 = Ti(m)m for all m > 0. Hence, z = = (Tigm)m) € R and

pm(f( )) - fm(xz(m),m) = 0 for all m, SO f( ) =0in R. u

Consider an element ¢ € R as in Example 4.3.4 (so ¢® = 1 and ¢ # 1). Thus,
0o(c) = 1 € Oc,./(p), so the image of ¢ in the residue field k¥ of R is 1. Hence, ¢ — 1 lies
in the maximal ideal mg of R, which we knew anyway from Example 4.3.4 since there we
proved vg(e —1) = p/(p—1) > 0. By the completeness of R, we get a unique local k-algebra
map k[u] — R satisfying u — ¢ —1 # 0. This map depends on the choice of &, but its image
does not:

Lemma 4.3.6. The image of k[u] in R is independent of .

Proof. Consider a second choice €', so ¢’ = ¢ for some a € Z5. (Note that ¢ lies in the
multiplicative group 14 mg whose “strict” neighborhoods of 1 are 1 + emp with vg(c) > 0,
and these are p-adically separated and complete, so Z,-exponentiation on 1 4+ mp makes
sense.) Letting x = ¢ — 1 and 2’ = ¢’ — 1 in mg, we can compute formally

r=e"—1=(1+2)"-1=ax+...

in R. Rigorously, the unique local k-algebra self-map of k[u] satisfying u +— (1 + u)* — 1
carries the map kJu] — R resting on ¢ to the one resting on ¢’. But this self-map is an
automorphism since (1 +u)® —1=au+ ... with a € Z. [ |

In view of the lemma, we may define the canonical subfield E C Frac(R) to be the fraction
field of the canonical image of k[u] in R for any choice of ¢ as in Lemma 4.3.6. By Theorem
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4.3.5, the separable closure E; of E within Frac(R) is a separable closure of E. The action
of the Galois group Gk on R extends uniquely to an action on Frac(R) (preserving vg), and
this does not fix the image € — 1 of u. However, for the extension K, = K(j,~) generated
by the components €™ of ¢ (for all choices of ) we see that the subgroup G.. C G is the
isotropy group of e—1 € R and so is the isotropy group of the intrinsic subfield £ C Frac(R).
Hence, G preserves the separable closure E; C Frac(R), so we get a group homomorphism

GKoo — Aut(Es/E) = GE
Lemma 4.3.7. The map of Galois groups Gk, — Gg is continuous.

Proof. Fix a finite Galois extension E’ of E inside of E; C Frac(R). We may choose a
primitive element € E'* for E' over E. By replacing x with 1/x if necessary, we can
arrange that x € R. The algebraicity of  over E implies that the Gg_-orbit of x is finite,
say {x = x1,...,x,}, with all z; € R. To find an open subgroup of G_ that has trivial
image in Gal(E’/FE), or equivalently lands in Gz C G, we just need to show that if g € G

is sufficiently close to 1 then g(z) is distinct from the finitely many elements z, . .., z, that
are distinct from z (forcing g(z) = x). The existence of such a neighborhood of the identity
is immediate from the continuity of the action of Gk on the Hausdorff space R. [ |

A much deeper fact that is best understood as part of the theory of norm fields is that the
continuous map in Lemma 4.3.7 is in fact bijective and so is a topological isomorphism. Even
better, there is a functorial equivalence between the categories of finite separable extensions
of K, and of E. This is a concrete realization of a special case of the general isomorphism
in (1.3.1), and it will be proved in §13.4 (see Theorem 13.4.3).

4.4. The field of p-adic periods Bgr. We have now assembled enough work to carry out
the first important refinement on the graded ring Byr, namely the construction of the field
of p-adic periods Bgr as promised in the discussion following Example 4.1.2. Inspired by the
universal property of Witt vectors in Proposition 4.2.3 and the perfectness of the F,-algebra
R, we seek to lift the Gg-equivariant surjective ring map 6y : R — Og,. /(p) defined by
(x;) — x¢ to a Gg-equivariant surjective ring map 6 : W(R) — Ocg,.. As we have already
observed, although O¢, is p-adically separated and complete, we cannot use Proposition
4.2.3 because O¢, /(p) is not perfect. Nonetheless, we will construct such a # in a canonical
(in particular, Gk-equivariant) manner.
Our definition for 6 as a set-theoretic map is simple and explicit:

00) [ealp™) =D Op™.

(Recall that W(R) is a strict p-ring with W(R)/(p) = R, so each of its elements has the unique
form Y [c,]p™ with ¢, € R.) This is very much in the spirit of the proof of Proposition 4.2.3
since ¢© = lim,,_,o0 &’ for any ¢ € R using any choice of lift &, € Oc « of ¢ € Oc,. /(D)
(with {¢,,} a compatible sequence of p-power roots of ¢y € Oc,. /(p)). In terms of the Witt
coordinatization (rg,r1,...) = Y. p"[r2 "] this says 0 : (ro,71,...) — >.(r2 ") Op", but for
any r € R we have (7? )@ = ((rP"")™)P" = ) in O, since r +— r™ is multiplicative.
Hence, we have the formula 6 : (ro,71,...) — > rﬁ")pn. By definition 6 is G g-equivariant,
and the only real issue is to check that it is a ring map:
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Lemma 4.4.1. The map 0 : W(R) — Oc,. is a ring homomorphism.

Proof. 1t suffices to prove that
0, =60 mod p" : W,(R) = W(R)/p"W(R) — Oc, /p"Oc, = Ox/p" O

is a ring map for all n > 1. Once additivity is established, both side of the multiplicativ-
ity identity 6, (ww’) = 6, (w)6,(w") depend Z-bilinearly on (w,w’) and so via Teichmiiller
expansions the verification of this identity is reduced to the case w = [r] and w’ = [r']:

o([r)[]) = (') = ()@ = O = o([r))o([r)).

Hence, we just have to check that each 6, is additive.
Writing w = (o, ..., z,_1) with z; € R, by definition

n—1 n—i
On(w) = Zpil’gi) = Zﬂ'(@@)p”*l = @n(xé") mod p", ... ,:1751"_)1 mod p")
i=0 i=0
where ©,, : W,,(O%/p"Or) — O /p" OF is the “nth ghost component” map defined by
n—1 )
(205 -y 2Zn1) Zp’zf )
i=0

By the very definition of the additive structure on W,,(A) for any ring A, the map &, is
additive. But ®,,(zg,...,2,-1) only depends on the z; mod p since if a = b mod p then
a?" " = " mod p"t i and so pla?” " = pit?" " mod p". In other words, ®, factors as
®,, o, where 7, : W,(Ox/p"Ox) - W, (Ox/pO%) is the natural quotient map and ®,, :
W, (O /pO%) — Ox/p"Ox is the map of sets (Zo,...,2n0 1) — 1o P2’ where 2z €
Or/p" OF is a lift of Z;.

Since 7, is surjective and additive (by functoriality of the additive structure on W)
and @, is additive, ®,, is also additive. Letting f, : R — O%/pOx denote the projection
r — ™ mod p to the nth member of the p-power compatible system that “is” r, we have

The map W, (f,) is additive since f, is a ring homomorphism and the _additive structure
on W, is functorial in ring homomorphisms, and we have just seen that ®,, is additive. We
conclude that 6,, is additive as well. [

This explicit definition of # makes it evident that € is surjective (since R — O¢, /(p) via
r +— r(™ mod p is surjective for each n > 0). In concrete terms, the formula shows that ¢
fits into the following family of commutative diagrams:

W(R) —— b,

| T

Wi(R) 5= WO /(p)) = Occ/(0")
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Proposition 4.4.2. The continuous surjective G -equivariant map 0 : W(R) — Og,. con-
structed above is open. Also, using the canonical k-algebra map j : k — R to make W(R) into
a W(k)-algebra via W(3j), 0 is a W(k)-algebra map via the natural W (k)-algebra structure
on Oc, .

Proof. To prove openness, using the product of the valuation topology from R on W(R) and
the p-adic topology on O¢,., we just have to show that if J is an open ideal in R then the
image under 0 of the additive subgroup of vectors (r;) with rg, ... ,rn E J (for fixed n) is
open in Og,. This image is J© + pJO +p"_1J("_1 , where J™ is the image of J
under the map of sets R — ﬁc « defined by 7+ 7™ Since Oc, has the p-adic topology,
it suffices to show that J™ is open in g, for each m > 0. But J™ = (J"")O 5o to
prove that 6 is open we just have to show that if J is an open ideal in R then J© is open
in O¢,. It is enough to work with J’s running through a base of open ideals, so we take
J = {r € R|vg(r) > ¢} with ¢ € Q. Since vg(r) = v(r®) and the map r — r©@ is a
surjection from R onto Og,, for such J we have that J© = {t € O¢, |v(t) > ¢}, which is
certainly open in Oc¢, . This concludes the proof that § is an open map.

Next, consider the claim that § is a map of W(k)-algebras. Recall that Oc, is made
into a W(k)-algebra via the unique continuous W (k)-algebra map h : W(k) — Oc, lifting
the identity map on k at the level of residue fields. (By such continuity and the p-adic
separatedness and completeness of ¢, , the existence and uniqueness of such an A is reduced
to the case when k is replaced with a finite extension &'/k, and the unique W(k)-algebra
map W (k') — Ogc, lifting the inclusion &' — k is built as follows: by W(k)-finiteness it
must land in the valuation ring of a finite extension of K if it exists, so we can pass to the
case when the target is a complete discrete valuation ring, whence the universal property of
W (k") can be used. Concretely, W(k') is just a finite unramified extension of W (k) within K,
the point being that the map on residue fields uniquely determines the map in characteristic
0.) Using p-adic continuity, it is enough to chase Teichmiiller digits.

Our problem is now to show that for each ¢ € k the image h([c]) is equal to 8([j(c)]), where
j : k — R is the canonical k-algebra map defined by c — (c*/?"),.50 € R(Ox/(p)) = R
and we view O%/(p) as a k-algebra over its k-algebra structure via Hensel’s Lemma. The
key point is that ¢ viewed in O%/(p) = Oc, /(p) is just h([c]) mod p (check!), so j(c) =
(h([c¢*/?™]) mod p) € R. Since the sequence of elements h([c'/?"]) in O¢,. is p-power com-

patible, j(c)” = h([c]). Thus, 6([j(c)]) = j(c)” = h([c]). u

We now have a Gi-equivariant surjective ring homomorphism

Oq : W(R)[1/p] - Oc,[1/p] = Ck,
but the source ring is not a complete discrete valuation ring. We shall replace W(R)[1/p]

with its ker fq-adic completion, and the reason this works is that ker g = (ker §)[1/p] turns
out to be a principal ideal. We now record some facts about ker 6.

Proposition 4.4.3. Choose p € R such that p© = p (ie., o = (p,p'/2,p'/¥* .. ) €
lim Oc, = R, sovr(p) =1) and let £ = fp—[fﬂ p—(p, 1,...)€W(R).

«——ax—axP
(1) The ideal ker @ C W(R) is the principal ideal generated by €.
(2) An element w = (rg,r1,...) € ker8 is a generator of ker 0 if and only if ry € R*.
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A defect of £, despite its explicitness, is that Gx does not act on £ in a nice way (but it
does preserve £ - W(R) = kerf). This will be remedied after replacing W(R)[1/p] with its
ker 0q-adic completion.

Proof. Clearly 0(¢) = 0([p]) —p = p® —p = 0 and ker & N p" W(R) = p" - ker 6 since
W(R)/(kerf) = Oc, has no nonzero p-torsion. Since W(R) is p-adically separated and
complete (as R is a perfect domain, so the p-adic topology on W(R) is just the product
topology on W(R) using the discrete topology of R), to prove that ¢ is a principal generator
of ker 6 it therefore suffices to show ker@ C (£,p) = ([p],p). But if w = (rg,71,...) € ker@
then r(()o) = 0 mod p, so vg(rg) = ordp(réo)) > 1 = vg(p) and hence ry € pR. We conclude
that w € ([ro],p) € ([p],p), as desired.
A general element w = (19,71, ...) € ker 6 has the form

w=¢-(rg,ry--) = @=L, )00, 71, ) = (ro, PPry — 167 ),
so ry = pPry — i, Hence, r1 € R* if and only if rj € R*, and this final unit condition is
equivalent to the multiplier (r(,r],...) being a unit in W(R), which amounts to w being a
principal generator of ker § (since W(R) is a domain). [

Ezample 4.4.4. Using the criterion in Proposition 4.4.3(2), prove that the element e—1 € ker 6
is a generator when p = 2. Then prove this is false whenever p > 2 (hint: vg(e) =p/(p — 1)
for all p).

Corollary 4.4.5. For all j > 1,
W(R) N (ker Oq)’ = (ker §).
Also, N(ker 8)7 = N(ker 6g)? = 0.

Proof. By a simple induction on j and chasing multiples of &, to prove the displayed equality
it suffices to check the case j = 1. This case holds since W(R)/(ker §) = Oc,. has no nonzero
p-torsion.

Since any element of W(R)[1/p] admits a p-power multiple in W(R), we conclude that

N(ker 0q)? = (N(ker 8)7)[1/p).

To prove this vanishes, it suffices to consider an arbitrary w = (rg,r1,...) € W(R) lying in
N(ker §)7. Thus, w is divisible by arbitrarily high powers of ¢ = [p]—p = (p, —1,...), so rq is
divisible by arbitrarily high powers of pin R. But vg(p) = 1 > 0, so by vg-adic separatedness
of R we see that ro = 0. This says that w = pw’ for some w’ € W(R) since R is a perfect F,-
algebra. Hence, w’ € (N(ker 0)7)[1/p] = N(kerfq)?. Thus, w’ € W(R) N (ker q)’ = (ker #)
for all j. This shows that each element of N(ker§)? in W(R) lies in Np® W(R), and this
vanishes since W(R) is a strict p-ring. [

We conclude that W(R)[1/p] injects into the inverse limit
(14.1) B = lim W(R)[1/p) (ker )
J

whose transition maps are Gg-equivariant, so By has a natural Gg-action that is com-
patible with the action on its subring W(R)[1/p]. (Beware that in (4.4.1) we cannot move
the p-localization outside of the inverse limit: algebraic localization and inverse limit do
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not generally commute with each other, as is most easily seen when comparing the t-adic
completion Q,[t] of Qu[t] = Z,[t][1/p] with its subring Z,[t][1/p] of power series with
“bounded denominators”.) The inverse limit Bj; maps Gx-equivariantly onto each quo-
tient W(R)[1/p]/(ker fq)’ via the evident natural map, and in particular for j = 1 the map
fq induces a natural Gx-equivariant surjective map 63, : Bjz — Cg. From the definitions
ker 83, N W(R) = ker 6, and ker 633 N W(R)[1/p] = ker fq since 03 restricts to fg on the
subring W(R)[1/p].

Proposition 4.4.6. The ring By is a complete discrete valuation ring with residue field
Ck, and any generator of ker g in W(R)[1/p] is a uniformizer of Bi. The natural map
Bix — W(R)[1/p]/(ker 6q)’ is identified with the projection to the quotient modulo the jth
power of the mazximal ideal for all 7 > 1.

Proof. Since ker fq is a nonzero principal maximal ideal (with residue field Cg ) in the domain
W(R)[1/p], for j > 1 we see that W(R)[1/p]/(ker fg)’ is an artin local ring whose only ideals
are (kerfg)'/(ker fg)? for 0 < i < j. In particular, an element of BJ; is a unit if and only
if it has nonzero image under 63;. In other words, the maximal ideal ker 6, consists of
precisely the non-units, so Bj, is a local ring.

Consider a non-unit b € By, so its image in each W(R)[1/p]/(kerfq)? has the form b;¢
with b; uniquely determined modulo (ker fg)?~* (with & as above). In particular, the residue
classes b; mod (ker fg)'~! are a compatible sequence and so define an element o' € B, with
b = &Y. The construction of &' shows that it is unique. Hence, the maximal ideal of BJ; has
the principal generator £, and £ is not a zero divisor in Bi.

It now follows that for each j > 1 the multiples of &/ in BJ; are the elements killed by the
surjective projection to W(R)[1/p]/(ker fq)’. In particular, Bj; is {-adically separated, so
it is a discrete valuation ring with uniformizer £. We have identified the construction of B
as the inverse limit of its artinian quotients, so it is a complete discrete valuation ring. W

The Frobenius automorphism ¢ of W(R)[1/p] does not naturally extend to Bj since it
does not preserve ker fqg; for example, ¢(§) = [p?] —p € ker 8g. There is no natural Frobenius
structure on Bl,. Nonetheless, we do have a filtration via powers of the maximal ideal, and
this is a G'g-stable filtration. We get the same on the fraction field:

Definition 4.4.7. The field of p-adic periods (or the de Rham period ring) is Bar :=
Frac(Biz) equipped with its natural G g-action and Gk-stable filtration via the Z-powers of
the maximal ideal of BJ;.

To show that the filtered field Byr is an appropriate refinement of Byt, we wish to prove
that the associated graded algebra gr*(Bgr) over the residue field Cx of Bj, (see Example
4.1.2) is Gg-equivariantly identified with the graded Cgk-algebra Byr. This amounts to
proving that the Zariski cotangent space of Bj;, which is 1-dimensional over the residue
field Cg, admits a canonical copy of Z,(1); this would be a canonical Z,-line on which
Gk acts by the p-adic cyclotomic character, and identifies the Zariski cotangent space with
Ck(1) as required.

We will do better: we shall prove that Bj admits a uniformizer ¢, canonical up to Z;-
multiple, on which G acts by the cyclotomic character, and that the set of such t’s is
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naturally Z,-equivariantly bijective with the set of Z,-bases of Z,(1) = lim 1, (K). (Such
elements ¢ do not live in W(R)[1/p], so it is essential to have passed to the completion B
to find such a uniformizer on which there is such a nice G g-action.) The construction of ¢
rests on elements ¢ € R from Example 4.3.4 as follows.

Choose ¢ € R with ¢® =1 and e® # 1, 50 §([e] = 1) =@ — 1 = 0. Hence, [¢] -1 €
ker§ C ker 035, so [e] =1+ ([e] — 1) is a 1-unit in the complete discrete valuation ring Bz
over K. We can therefore make sense of the logarithm

t = log([e]) = log(1 + (] — 1)) = (- lEL =D

€ BT,.
n dR
n>1

This lies in the maximal ideal of Bi;. Note that if we make another choice &’ then ¢’ = &*
for a unique a € Z; using the natural Z,-module structure on 1-units in R. Hence, by
continuity of the Teichmiiller map R — W(R) relative to the vg-adic topology of R we have
[€'] = [¢]* in W(R). Thus, ¢’ = log([¢']) = log([¢]*).

We wish to claim that log([g]*) = a - log([¢]), but this requires an argument because the
logarithm is defined as a convergent sum relative to a topology on Bj; that “ignores” the vg-
adic topology of R whereas the exponentiation procedure [¢]* involves the vg-adic topology
of R in an essential manner. A good way to deal with this is to introduce a topological ring
structure on Bj; that is finer than its discrete valuation topology and relative to which the
natural map W(R) — Bj; is continuous. We leave this to the reader in the form of the
multi-part Exercise 4.5.3.

The reader is strongly encouraged to read over the statements in Exercise 4.5.3, and to
try to solve some of the parts, as this exercise will play an essential role in numerous later
arguments and constructions. It is the key to ensuring that the constructions of p-adic Hodge
theory retain the right kind of continuity conditions without which proofs would break down.
(For example, in Theorem 2.2.7, it is essential that we work with continuous cohomology.)

We now use Exercise 4.5.3(5). Let Ur C 1+ mp be the subgroup of elements x such
that (¥ = 1 (such as any choice of ). We claim that the logarithm log([z]) € Bjy formed
as a convergent sum for the discrete valuation topology is continuous in x relative to the
vg-adic topology of the topological group Ur C 1 + mpg and the topological ring structure
just constructed on Bj;. Since z +— log([x]) is an abstract homomorphism Ur — Biy
between topological groups, it suffices to check continuity at the identity. If a C R is
an ideal and = € (1 + a) N Ug then working in W(R/a) shows that [z] — 1 € W(a), so
([x] = 1)"/n € p~? W(a?’") with j = ord,(n) for all n > 1. This gives the required continuity,
in view of how the topology on Bl is defined in Exercise 4.5.3.

For any a € Z, and v € Ur we have 2* € Ug by continuous extension from the case
a € Z* via the tautological continuity of the map z — z(©) from R to O¢,. Likewise, by
continuity of log : Ur — Bii, for any a € Z, and x € U we have log([z%]) = alog([z])
by continuous extension from the case a € Z*. Hence, for ¢’ = £ with a € Z) we have
t' = log([¢']) = alog([¢e]) = at.

In other words, the line Z,t in the maximal ideal of BJ; is intrinsic (i.e., independent of
the choice of €) and making a choice of Z,-basis of this line is the same as making a choice

of e. Also, choosing ¢ is literally a choice of Z,-basis of Z,(1) = lim y1,»(K). For any g € Gg
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we have g(e) = X9 in R since g(¢™) = (¢™)X@ for the primitive p"th roots of unity
e € O for all n > 0. Thus, by the G g-equivariance of the logarithm on 1-units of Bz,

g(t) = log(g([e])) = log([g(e)]) = log([e¥¥]) = log([e]¥?)) = x(9)t.
We conclude that Z,t is a canonical copy of Z,(1) as a Gk-stable line in Bj. Intuitively,
this line is viewed as an analogue of the Z-line Z(1) := ker(exp) C C, and in particular the
choice of a Z,-basis element ¢ is analogous to a choice of 277 in complex analysis.
The key fact concerning such elements ¢ is that they are uniformizers of Bjy, and hence
we get a canonical isomorphism gr®(Bgr) ~ Byr. We now prove this uniformizer property.

Proposition 4.4.8. The element t = log([¢]) in Bl is a uniformizer.

Proof. By construction of ¢, 83, (t) = 0. Hence, t is a non-unit. We have to prove that ¢ is
not in the square of the maximal ideal. In view of its definition as an infinite series in powers
([e] = 1)"/n with [¢] — 1 in the maximal ideal, all such terms with n > 2 can be ignored.
Thus, we just have to check that [¢] — 1 is not in the square of the maximal ideal. But the
projection from Bj, onto the quotient modulo the square of its maximal ideal is the same as
the natural map onto W(R)[1/p]/(ker fg)?, so we have to prove that [¢] — 1 is not contained
in (ker 0q)?, or equivalently is not contained in W(R) N (ker 6q)* = (ker )* = £2 W(R) with
¢ = [p] — p for p € R defined by a compatible sequence of p-power roots of p.

To show that [g] — 1 is not a W(R)-multiple of £2, it suffices to project into the Oth
component of W(R) and show that € — 1 is not an R-multiple of p?. That is, it suffices to
prove vg(e — 1) < vg(p?) = 2. But vg(e — 1) = p/(p — 1) by Example 4.3.4, so for p > 2
we have a contradiction. Now suppose p = 2. In this case we will work in Wy(R). Since
& = [p? —2[p]+4 = (p*0,...) in W(R), for any w = (rg,71,...) € W(R) we compute
&w = (rop?,rip*,...). However, for p = 2 we have —1 = (1,1,...) in Zy = W(F5) since
—1=14+2-1mod4,s0[e] —1=(¢—1,e—1,...) in W(R). Thus, if [¢] — 1 were a W(R)-
multiple of £2 for p = 2 then € — 1 = r;p* for some r; € R. This says vg(e —1) > vg(p?) = 4,
a contradiction since vg(e — 1) =p/(p—1) = 2. |

Remark 4.4.9. Note that the construction of Bl only involves the field K through its
completed algebraic closure Cx. More specifically, if K’ C Cg is a complete discretely-
valued subfield (so it is a p-adic field, as its residue field &’ is perfect due to sitting between k
and k) then we get the same ring BJ; whether we use K or K’. The actions of G and G on
this common ring are related in the evident manner, namely via the inclusion G — G K as
subgroups of the isometric automorphism group of Ck. For example, replacing K with K
does not change Bj, but replaces the Gy-action with the underlying Ix-action. Likewise,
the ring Bj, is unaffected by replacing K with a finite extension within K.

We end our preliminary discussion of Bj; by recording some important properties that
are not easily seen from its explicit construction. First of all, whereas W(R)[1/p] does not
contain any nontrivial finite totally ramified extension of Ky = W (k)[1/p] (as it lies inside of
the absolutely unramified p-adic field W(Frac(R))[1/p]), the situation is quite different for
Bi::

Lemma 4.4.10. The Ky-algebra Bl contains a unique copy of K as a subfield over K,
and this lifting from the residue field is compatible with the action of Gk, .
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Moreover, any extension K'/ Ky inside of K with finite ramification index gets its valuation
topology as the subspace topology from By . In particular, K' is closed in Bl if it is complete.

Proof. Since Bjj is a complete discrete valuation ring over Ky, and K is a subfield of the
residue field Cg that is separable algebraic over Ky, it follows from Hensel’s Lemma that K
uniquely lifts to a subfield over Ky in Big. The uniqueness of the lifting ensures that this is
a G g-equivariant lifting.

Now pick an algebraic extension K’/Kj with finite ramification index. To check that K’
gets its valuation topology as the subspace topology, first recall that Bi; only depends on
Cy, 50 we can construct it from the view of the completion Ko = W (k)[1/p]. In particular,
Bjy contains IA(OK "over K’, and by Exercise 4.5.3(3) the induced topology on IA(O is the
usual one. Hence, toAcheck that the topology on K’ is as expected it suffices to replace K’
with the subfield K’K, which we may then rename as K (upon replacing k with k). In other
words, we just have to check that K gets the expected subspace topology.

Since Bjy is a topological Ky-algebra and the valuation topology on K is its product
topology for a Ky-basis, if we give K its valuation topology then the natural map K — Bj
is continuous. To see that this is an embedding it suffices to compare convergent sequences.

By continuity of the map 0q : Bjz — Cgk onto Ck with its valuation topology, we are
done. -

Remark 4.4.11. Beware that the subspace topology on K from Bj; is not its valuation
topology, nor is the inclusion K — Bi; even continuous! Indeed, iof it were continuous
then by completeness of the topology on Bj; we would get a unique continuous extension

Cx =K — Bi;. By uniqueness, this would have to be a Gk-equivariant section to the
projection to the residue field, so the filtration on Bgr would be canonically split and Bggr
would be isomorphic to Byt as graded rings equipped with a Gg-action. In particular,
all Hodge—-Tate representations would be de Rham. But this is false; we will give simple
examples in Example 6.3.5 (but the proof that these simple examples are not de Rham is
very far from elementary).

It turns out that relative to the topology on Bi,, the subfield K is dense. This is proved
by Colmez in [21, §A2], where he gives a direct description of this subspace topology on K.

The following innocuous-looking further topological result seems to be less elementary to
prove than one might expect. We need it in the proofs of some important facts (Proposition
6.3.8 and Corollary 15.3.10).

Lemma 4.4.12. Any finite-dimensional K -subspace W in Bjy or any Big/(t™) is closed
and acquires its natural K-linear topology as its subspace topology.

Proof. Since Bjy is a topological K-algebra (see Exercise 4.5.3) and it is Hausdorff with
a countable base of opens around the origin, the subspace topology on W is a Hausdorff
topological vector space structure and closedness of W in Bjp can be checked using se-
quences. Consider any point b € B, lying in the closure of W, so b = limw,, for a sequence
{wo, w1, ...} in W. Then {w,,} is a Cauchy sequence for the subspace topology of W so
if this topology is the usual (complete) one then {w,,} has a limit w € W. The Hausdorff
property of the topology on Bj; would then force b = w € W.
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It remains to prove that the subspace topology on W is the linear topology defined using
a finite K-basis. By [7, I, §3, Thm. 2], a finite-dimensional vector space over a field complete
with respect to a nontrivial absolute value has a unique structure of Hausdorff topological
vector space, namely the one defined using a finite basis. [ |

The canonical K-structure on B3 (and hence on its fraction field Bgr) plays an important
role in the study of finer period rings; it can be shown that there is no G x-equivariant lifting
of the entireresidue field C into B (whereas such an abstract lifting exists by commutative
algebra and is not useful).

Another property of Bgr that is hard to see directly from the construction is the de-
termination of its subfield of Gg-invariants. As we have just seen, there is a canonical
G-equivariant embedding K — Bj;, whence K C prf. (Nothing like this holds for
W(R)[1/p] if K # Ky.) This inclusion is an equality, due to the Tate-Sen theorem:

Theorem 4.4.13. The inclusion K C BdGPf 15 an equality.

Proof. Since the Gk-actions respect the (exhaustive and separated) filtration, the field ex-
tension prff of K with the subspace filtration has associated graded K-algebra that injects
into (gr*(Bqr))®% = BSE. But by the Tate-Sen theorem this latter space of invariants is
K. We conclude that gr'(Bfg ) is 1-dimensional over K, so the same holds for BdGPf . |

The final property of Bgr that we record is its dependence on K. An inspection of the
construction shows that Bj depends solely on €, and not on the particular p-adic field
K C 0c,.]1/p] = Ck whose algebraic closure is dense in Cr. More specifically, B, depends
functorially on Oc,. (this requires reviewing the construction of R and #), and the action
of Aut(Oc,) on Bj; via functoriality induces the action of G (via the natural inclusion of
Gk into Aut(0¢,.)). Hence, if K — K’ is a map of p-adic fields and we pick a compatible
embedding K — K’ of algebraic closures then the induced map O¢, — Oc,., induces a
map B:{R, K= B;{R, ;o that is equivariant relative to the corresponding map of Galois groups
Gk — Gg. In particular, if the induced map Cx — Cg- is an isomorphism then we have
Bir x = Bir g+ (compatibly with the inclusion Ggr < Gr) and likewise for the fraction

fields. This applies in two important cases: K’/K a finite extension and K’ = K. Tn other
words, Bi; and Bgg are naturally insensitive to replacing K with a finite extension or with
a completed maximal unramified extension. The invariance of Bj; and Byr under these two
kinds of changes in K is important in practice when replacing G g with an open subgroup
or with Ik in the context of studying de Rham representations in §6. We will return to this
issue in more detail in Proposition 6.3.8 and the discussion immediately preceding it.

4.5. Exercises.

Ezercise 4.5.1. Let K be a p-adic field and Kj its maximal unramified subfield (as defined

—_

above Remark 4.2.4). Prove that the natural map K™ ®g, K — K" is an isomorphism.

Ezercise 4.5.2. Let K be a p-adic field and R = R(0%/(p)) the associated perfect valuation
ring. Prove that a subset ¥ C R is dense for the vg-adic topology if and only if the maps
0, : R — Oc, /(p) have surjective restriction to ¥ for all n > 0. Consider a nonzero
r = (zp)n>0 € R. Prove that z,, # 0 for all sufficiently large n, and show that if z,, € O¢,, is
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a lift of z,, then |z,| — 1 as n — oo. In other words, the z,,’s are “almost units” in O¢, /(p)
for large n. This is a very useful fact.

FEzercise 4.5.3. Let K be a p-adic field (with residue field k) and let R = R(0%/(p)) be the
associated valuation ring of an algebraically closed field of characteristic p > 0.

This crucial exercise introduces a topological ring structure on W(R)[1/p] that induces
the natural vg-adic product topology on the subring W(R) and extends it to a natural
topological ring structure on Bj; whose induced quotient topology on the residue field Cg
is the natural valuation topology. Roughly speaking, for W(R)[1/p] the idea is to impose
a topology using controlled decay of coefficients of Laurent series in p. The situation is
fundamentally different from topologizing Q, = Z,[1/p] from the topology on Z, because
p W(R) is not open in W(R) (in contrast with pZ, C Z,) when R is given its vg-adic (rather
than its discrete) topology. Since this exercise has many parts, you may prefer to just do a
few parts now and come back to the rest as you see them used later.

(1) For any open ideal a C R and N > 0, let

Una= |J (07 W(@') +p" W(R)) CW(R)[1/p],

j>—N

where W(J) for an ideal J of R means the ideal of Witt vectors in W(R) whose com-
ponents all lie in J. Prove that Uy, is a Gk-stable W(R)-submodule of W(R)[1/p].

(2) Prove Unsar.ane € Un,aNUnsp and that Uy q-Un,q € Un,q. Deduce that W(R)[1/p] has
a unique structure of topological ring with the Uy 4’s a base of open neighborhoods
of 0, and that the Gk-action on W(R)[1/p] is continuous.

(3) Prove that Uy, N W(R) = W(a) + p"¥ W(R), and deduce that W(R) endowed with
its product topology using the vz-adic topology on R is a closed topological subring
of W(R)[1/p]. Conclude that K, = W (k)[1/p] C W(R)[1/p] is a closed subfield with
its usual p-adic topology (hint: k is a discrete subring of R).

(4) For each N > 0, prove that pY Oc, C 0q(Uy.4) and show that this containment gets
arbitrarily close to an equality for the p-adic topology (i.e., q(Un,q) is contained
in pN*?0c, for arbitrarily small @ > 0) by taking a to be sufficiently small. In
particular, deduce that 6q : W(R)[1/p] — Ck is a continuous open map.

(5) Prove that the multiplication map & : W(R)[1/p] — W(R)[1/p] is a closed embedding,
so all ideals (kerq)’ = & W(R)[1/p] are closed. Conclude that with the quotient
topology on each W(R)[1/p|/(kerfg)?, the inverse limit topology on Bj; makes it
a Hausdorff topological ring relative to which the powers of the maximal ideal are
closed, W(R) is a closed subring (with its natural topology as subspace topology),
the Gk-action is continuous, the multiplication map by § on By (and hence by any
uniformizer!) is a closed embedding, and the residue field Cg inherits its valuation
topology as the quotient topology. (It is not clear if W(R)[1/p] recovers its initial
topology as the subspace topology from By, but this is never needed. On the other
hand, it is elementary from the construction that the map from Bj; onto each of its
artinian quotients is an open mapping, so these quotients recover their initial topology
as their quotient topology from Bjy. Also, (3) implies that Bj; is a topological K-
algebra, by working with a Ky-basis of K.)
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(6) Prove that this topology on Bl is complete. That is, Cauchy sequences (defined
in an evident manner) converge, or equivalently b, converges in Bj; whenever
b, — 0. (Hint: Really prove that each W(R)[1/p]/(kerfq)’ is complete. For this
you'll need to use how the Uy ,’s were defined in order to prove, akin to the familiar
case of Cg, that a sequence converging to 0 in such a quotient is represented by one
in W(R)[1/p] that is contained in p~ W(R) for a single N; this boundedness on
denominators is not in the definition of the topology, so it really must be proved.)

(7) Recall that the adele ring of a global field is a natural example of a topological rings
whose subset of units is not a topological group (inversion is not continuous). Prove
that the subset of units is open. Can you determine if inversion is continuous relative
to the subspace topology? (This is never needed.)

5. FORMALISM OF ADMISSIBLE REPRESENTATIONS

Now that we have developed some experience with various functors between Galois rep-
resentations and semilinear algebra categories via suitable rings with structure, we wish to
axiomatize this kind of situation for constructing and analyzing functors defined via “period
rings” in order that we do not have to repeat the same kinds of arguments every time we
introduce a new period ring. In §6 we shall use the following formalism.

5.1. Definitions and examples. Let F' be a field and G be a group. Let B be an F-
algebra domain equipped with a G-action (as an F-algebra), and assume that the invariant
F-subalgebra F = B¢ is a field. We do not impose any topological structure on B or F or
G. Our goal is to use B to construct an interesting functor from finite-dimensional F-linear
representations of G to finite-dimensional E-vector spaces (endowed with extra structure,
depending on B).

We let C' = Frac(B), and observe that G also acts on C' in a natural way.

Definition 5.1.1. We say B is (F, G)-regular if C¢ = B¢ and if every nonzero b € B whose
F-linear span F'b is G-stable is a unit in B.

Note that if B is a field then the conditions in the definition are obviously satisfied. The
cases of most interest will be rather far from fields. We now show how the Tate—Sen theorem
(Theorem 2.2.7) provides two interesting examples of (F, G)-regular domains.

Example 5.1.2. Let K be a p-adic field with a fixed algebraic closure K, and let Cx denote
the completion of K. Let G = Gx = Gal(K/K). Let B = Byt = ®nczCx(n) endowed with
its natural G-action. Non-canonically, B = Cg[T,1/T]| with G acting through the p-adic
cyclotomic character x : G — 25 via g(3a,T") = 3 g(a,)x(g)"T". Obviously in this
case C' = Cg(T). We claim that B is (Q,, G)-regular (with B¢ = K).

By the Tate-Sen theorem, B¢ = ©&Ck(n)¢ = K. To compute that C¢ is also equal to
K, consider the G g-equivariant inclusion of C' = Cg(7') into the formal Laurent series field
Cxk((T)) equipped with its evident G-action. It suffices to show that Cx((T)¢ = K. The
action of ¢ € G on a formal Laurent series Y ¢, 7™ is given by >_ ¢, T™ +— > g(c,)x(9)"T", so
G-invariance amounts to the condition ¢, € Cg(n)% for all n € Z. Hence, by the Tate-Sen
theorem we get ¢, = 0 for n # 0 and ¢y € K, as desired.
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Verifying the second property in (Q,, Gk )-regularity goes by a similar method, as follows:
if b € B — {0} spans a Gg-stable Q,-line then G acts on the line Q,b by some character
Y G — Q). It is a crucial fact (immediate from the continuity of the G'i-action on each
direct summand Cg(n) of B = Byr) that ¢ must be continuous (so it takes values in Z5).
Writing the Laurent polynomial bas b =Y ¢;77, we have ¢(g)b = g(b) = >_ g(c¢;)x(9)’T?, so
for each j we have (¥ "'x7)(g) - g(¢;) = ¢; for all g € G. That is, each ¢; is Gx-invariant in
Ck(¢¥~1x7). But by the Tate-Sen theorem, for a Z,;-valued continuous character n of G, if
Cxk(n) has a nonzero Gg-invariant element then 7|7, has finite order. Hence, (¢»"*x?)|,. has
finite order whenever ¢; # 0. It follows that we cannot have c;, c;; # 0 for some j # j', for
otherwise taking the ratio of the associated finite-order characters would give that x’/~7'|,.
has finite order, so x|, has finite order (as j — j # 0), but this is a contradiction since x
cuts out an infinitely ramified extension of K. It follows that there is at most one j such
that ¢; # 0, and there is a nonzero ¢; since b # 0. Hence, b = ¢IV for some j and some
ce Cyg,s0be B*.

Ezample 5.1.3. Consider B = B, equipped with its natural action by G = G. This is
a complete discrete valuation ring with uniformizer ¢ on which G acts through y and with
fraction field C' = Bqgr = B[1/t]. We have seen in Theorem 4.4.13 (using that the associated
graded ring to Bgg is Byr) that CY = K, so BY = K too. Since Bgg is a field, it follows
trivially that Bag is (Q,, G)-regular. Let us consider whether B = Bj; is also (Q,, G)-
regular. The first requirement in the definition of (Q,, G)-regularity for B is satisfied in this
case, as we have just seen. But the second requirement in (Q,, G)-regularity fails: ¢t € B
spans a G-stable Q,-line but ¢t ¢ B*.

The most interesting examples of (Q,, Gk )-regular rings are Fontaine’s rings Bes and By
(certain subrings of Bgr with “more structure”), which turn out (ultimately by reducing
to the study of Bur) to be (Q,, Gk)-regular with subring of Gk-invariants equal to Ky =
Frac(W(k)) = W(k)[1/p] and K respectively.

In the general axiomatic setting, if B is an (F, G)-regular domain and E denotes the field
CY = BY then for any object V in the category Repp(G) of finite-dimensional F-linear
representations of G we define

Dp(V) = (B®r V)%,
so Dg(V) is an E-vector space equipped with a canonical map

ay : B Dp(V) - BRp (BRrV)=(B®g B)®rV — B V.

This is a B-linear G-equivariant map (where G acts trivially on Dg(V') in the right tensor
factor of the source), by inspection.

As a simple example, for V = F with trivial G-action we have Dp(F) = BY = E and the
map ay : B = B®g F — B ®p ' = B is the identity map. It is not a priori obvious if
Dg(V) always lies in the category Vecg of finite-dimensional vector spaces over E, but we
shall now see that this and much more is true.

5.2. Properties of admissible representations. The aim of this section is to prove the
following theorem which shows (among other things) that dimg Dp(V) < dimp V; in case
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equality holds we call V' a B-admissible representation. For example, V = F' is always B-
admissible. In case we fix a p-adic field K and let F' = Q, and G = Gk then for B = By
this coincides with the concept of being a Hodge-Tate representation. For the ring Bggr
and Fontaine’s finer period rings B.;s, and By the corresponding notions are called being a
de Rham, crystalline, and semi-stable representation respectively.

Theorem 5.2.1. Fiz V as above.
(1) The map av is always injective and dimg D(V') < dimp V', with equality if and only
if aoy is an isomorphism.
(2) Let Rep2(G) C Repy(G) be the full subcategory of B-admissible representations.
The covariant functor Dpg : Repg(G) — Vecg to the category of finite-dimensional
E-vector spaces is exact and faithful, and any subrepresentation or quotient of a

B-admissible representation is B-admissible.
(3) If Vi, Va € RepR(G) then there is a natural isomorphism

Dp(Vi) ®g Dp(Va) ~ Dp(Vi @F Va),

so Vi ®@p Vy € RepR(G). If V € RepR(G) then its dual representation V'V lies in
RepZ(G) and the natural map

is a perfect duality between Dg(V') and Dg(V'V).

In particular, Rep2(G) is stable under the formation of duals and tensor products
in Repp(G), and Dp naturally commutes with the formation of these constructions
in Rep2(G) and in Vecp.

Moreover, B-admissibility is preserved under the formation of exterior and sym-
metric powers, and Dg naturally commutes with both such constructions.

Before proving the theorem, we make some remarks.

Remark 5.2.2. In practice F' = Q,, G = Gk for a p-adic field K, and £ = K or £ = K
(the maximal unramified subfield, W(k)[1/p]), and the ring B has more structure (related
to a Frobenius operator, filtration, monodromy operator, etc.). Corresponding to this extra
structure on B, the functor Dpg takes values in a category of finite-dimensional E-vector
spaces equipped with “more structure”, with morphisms being those E-linear maps which
“respect the extra structure”.

By viewing Dp with values in such a category, it can fail to be fully faithful (such as
for B = Byt or B = Bgr using categories of graded or filtered vector spaces respectively),
but for more subtle period rings such as B.s and By one does get full faithfulness into a
suitably enriched category of linear algebra objects. One of the key results in recent years
in p-adic Hodge theory is a purely linear algebraic description of the essential image of the
fully faithful functor Dg for such better period rings (with the Dp viewed as taking values
in a suitably enriched subcategory of Vecg).

Remark 5.2.3. Once the theorem is proved, there is an alternative description of the B-
admissibility condition on V: it says that B®p V with its B-module structure and G-action
is isomorphic to a direct sum B®" (for some r) respecting the B-structure and G-action.
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Indeed, since ay is G-equivariant and B-linear, we get the necessity of this alternative
description by choosing an E-basis of Dg(V). As for sufficiency, if B ®p V ~ B®" as B-
modules and respecting the G-action then necessarily r = d := dimp V' (as B ®p V is finite
free of rank d over B), and taking G-invariants gives Dp(V) ~ (B%)%? = E% as modules
over BY = E. This says dimg Dp(V) = d = dimp V, which is the dimension equality
definition of B-admissibility.

Proof. First we prove (1). Granting for a moment that «y is injective, let us show the rest
of (1). Extending scalars from B to C' := Frac(B) preserves injectivity (by flatness of C
over B), so C ®@g Dg(V) is a C-subspace of C @ V. Comparing C-dimensions then gives
dimg Dp(V) < dimpg V. Let us show that in case of equality of dimensions, say with common
dimension d, the map oy is an isomorphism (the converse now being obvious). Let {e;} be
an E-basis of Dg(V') and let {v;} be an F-basis of V, so relative to these bases we can
express ay using a d x d matrix (b;;) over B (thanks to the assumed dimension equality).
In other words, e; = Y b;; ® v;. The determinant det(ay ) := det(b;;) € B is nonzero due
to the isomorphism property over C' = Frac(B) (as C' ®p ay is a C-linear injection between
C-vector spaces with the same finite dimension d, so it must be an isomorphism). We want
det(ay) € B*, so then ay is an isomorphism over B. Since B is an (F, G)-regular ring, to
show the nonzero det(ay ) € B is a unit it suffices to show that it spans a G-stable F-line in
B.

The vectors e; = > b;; ®v; € Dp(V) C B®pV are G-invariant, so passing to dth exterior
powers on «y gives that

A(ay)(er A+ A eg) = det(bij)oy A - A g

is a G-invariant vector in B ®p A4(V). But G acts on v; A --- A vy by some character
n: G — F* (just the determinant of the given F-linear G-representation on V'), so G must
act on det(b;;) € B — {0} through the F*-valued n~'.

This completes the reduction of (1) to the claim that ay is injective. Since B is (F,G)-
regular, we have that E = B is equal to C¢. For Dg(V) := (C ®r V) we also have a
commutative diagram

B®g Dg(V) i>B®FV

| |

C®pDc(V) —=C@pV

in which the sides are injective. To prove injectivity of the top it suffices to prove it for
the bottom. Hence, we can replace B with C' so as to reduce to the case when B is a field.
In this case the injectivity amounts to the claim that ay carries an E-basis of Dg(V) to a
B-linearly independent set in B ®p V| so it suffices to show that if z1,..., 2, € B®r V are
E-linearly independent and G-invariant then they are B-linearly independent. Assuming to
the contrary that there is a nontrivial B-linear dependence relation among the x;’s, consider
such a relation of minimal length. We may assume it to have the form
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for some r > 2 since B is a field and all z; are nonzero. Applying g € G gives

wr=g(x,) =Y g(bi) - glw:) = > g(bi) - .
i<r i<r
Thus, minimal length for the relation forces equality of coefficients: b; = g(b;) for all i < r,
so b; € BY = E for all i. Hence, we have a nontrivial E-linear dependence relation among
Z1,...,T,, a contradiction.

Now we prove (2). For any B-admissible V' we have a natural isomorphism B®g Dp(V') ~
B ®pV,so Dg is exact and faithful on the category of B-admissible Vs (since a sequence
of E-vector spaces is exact if and only if it becomes so after applying B ®g (-), and similarly
from F to B). To show that subrepresentations and quotients of a B-admissible V' are
B-admissible, consider a short exact sequence

0=V -V -V"50

of F|G]-modules with B-admissible V. We have to show that V' and V" are B-admissible.
From the definition Dp is left-exact without any B-admissibility hypothesis, so we have a
left-exact sequence of E-vector spaces

0 — Dp(V') = Dp(V) — Dp(V")

with dimg Dp(V) = d by B-admissibility of V', so d < dimg Dg(V’) + dimg Dg(V"). By
(1) we also know that the outer terms have respective E-dimensions at most d' = dimpg V"’
and d’ = dimp V", But d = d’ + d” from the given short exact sequence of F|G]-modules,
so these various inequalities are forced to be equalities, and in particular V' and V" are
B-admissible.

Finally, we consider (3). For B-admissible V; and V3, say with d; = dimg Vj, there is an
evident natural map

Dp(V1) @ Dp(Va) = (B®rp V1) @p (B®p Va) = BRp (V1 @ V)

that is seen to be invariant under the G-action on the target, so we obtain a natural E-linear
map

tviv, : Dp(V1) ®g Dp(Va) — Dp(Vi @F Va),

with source having F-dimension dids (by B-admissibility of the V;’s) and target having FE-
dimension at most dimg(V; ®f V5) = didy by applying (1) to V; ®p V5. Hence, as long as
this map is an injection then it is forced to be an isomorphism and so V; ® g V5 is forced to be
B-admissible. To show that ty, y, is injective it suffices to check injectivity after composing
with the inclusion of Dg(V; ®p V) into B®p (V4 ®f V3), and by construction this composite
is seen to coincide with the composition of the injective map

Dp(Vi) ® Dp(Va) = B®g (Dp(Vi) ®r Dp(V2)) = (B®g Dp(V1)) ®@p (B ®g Dg(Vs))

and the isomorphism ay, ®p ay, (using again that the V; are B-admissible).

Having shown that B-admissibility is preserved under tensor products and that Dpg nat-
urally commutes with the formation of tensor products, as a special case we see that if V'
is B-admissible then so is V¥ for any r > 1, with Dg(V)®" ~ Dg(V®"). The quotient
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A"(V') of V" is also B-admissible (since V®" is B-admissible), and there is an analogous
map A" (Dg(V)) — Dg(A"V) that fits into a commutative diagram

(5.2.1) Dp(V)¥" —— Dp(V®)

l |

N'(Dp(V)) —= Dg(A"V)

in which the left side is the canonical surjection and the right side is surjective because it is
Dpg applied to a surjection between B-admissible representations. Thus, the bottom side is
surjective. But the left and right terms on the bottom have the same dimension (since V' and
A"V are B-admissible, with dimp V' = dimg Dg(V)), so the bottom side is an isomorphism!

The same method works with symmetric powers in place of exterior powers. Note that
the diagram (5.2.1) without an isomorphism across the top can be constructed for any
V € Repp(G), so for any such V' there are natural E-linear maps A"(Dg(V)) — Dg(A"V)
and likewise for rth symmetric powers, just as we have for tensor powers (and in the B-
admissible case these are isomorphisms).

The case of duality is more subtle. Let V be a B-admissible representation of G over F'.
To show that V'V is B-admissible and that the resulting natural pairing between Dpg(V') and
Dg(VV) is perfect, we use a trick with tensor algebra. For any finite-dimensional vector
space W over a field with dim W = d > 1 there is a natural isomorphism

det(WY) @ AH (W) ~ WY

defined by
(Lr A Alg) @ (wa A -+ Awg) = (wy = det(i(wy))),

and this is equivariant for the naturally induced group actions in case W is a linear represen-
tation space for a group. Hence, to show that V'V is a B-admissible F-linear representation
space for G we are reduced to proving B-admissibility for det(VY) = (det V)" (as then
its tensor product against the B-admissible A"!(V) is B-admissible, as required). Since
det V' is B-admissible, we are reduced to the 1-dimensional case (for proving preservation of
B-admissibility under duality).

Now assume the B-admissible V' satisfies dimz V' = 1, and let vy be an F-basis of V', so B-
admissibility gives that Dg(V') is 1-dimensional (rather than 0). Hence, Dg(V) = E(b® vy)
for some nonzero b € B. The isomorphism ay : B Dp(V) ~ BRprV = B(1®uwvy) between
free B-modules of rank 1 carries the B-basis b ® vy of the left side to b ® vy = b+ (1 ® vy)
on the right side, so b € B*. The G-invariance of b ® vy says g(b) ® g(vy) = b ® vy, and we
have g(vy) = n(g)vo for some n(g) € F* (as V is a 1-dimensional representation space of G
over F'| say with character 1), so n(g)g(b) = b. Thus, b/g(b) = n(g) € F*. Letting vy be the
dual basis of V'V, one then computes that Dg(V") contains the nonzero vector b=! ® vy, so
it is a nonzero space. The 1-dimensional V'V is therefore B-admissible, as required.

Now that we know duality preserves B-admissibility in general, we fix a B-admissible V'
and aim to prove the perfectness of the pairing defined by

(,)v:Dp(V)®g Dp(VY) ~ Dp(V ®@p VY) — Dg(F) = E.
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For dimp V' = 1 this is immediate from the above explicitly computed descriptions of Dg(V)
and Dg(V") in terms of a basis of V' and the corresponding dual basis of VV. In the general
case, since V and V'V are both B-admissible, for any r > 1 we have natural isomorphisms
N (Dg(V)) =~ Dg(A"(V)) and A"(Dg(VV)) ~ Dp(A"(VV)) ~ Dg((A"V)V) with respect to
which the pairing
Ng(Dp(V)) @p Ap(Dp(VY)) — E

induced by (-, )y on rth exterior powers is identified with (-,-)sry. Since perfectness of a
bilinear pairing between finite-dimensional vector spaces of the same dimension is equivalent
to perfectness of the induced bilinear pairing between their top exterior powers, by taking
r = dimpV we see that the perfectness of the pairing (-, )y for the B-admissible V is
equivalent to perfectness of the pairing associated to the B-admissible 1-dimensional det V.
But the 1-dimensional case is settled, so we are done. |

5.3. Exercises.

Exercise 5.3.1. Verify the unchecked linear-algebra compatibility assertions in the proofs in

§5.
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Part II. Period rings and functors
6. DE RHAM REPRESENTATIONS

6.1. Basic definitions. Since Byg is (Q,, Gk )-regular with Bﬁ{( = K, the general formal-
ism of admissible representations provides a good class of p-adic representations: the Bggr-
admissible ones. More precisely, we define the covariant functor Dgyg : Repr(G k) — Vecg
valued in the category Vecg of finite-dimensional K-vector spaces by

Dar(V) = (Bar ®q, V)X,

so dimg Dgr(V) < dimg, V. In case this inequality is an equality we say that V is a
de Rham representation (i.e., V is Bgr-admissible). Let Rep‘éRp (Gk) € Repq, (Gk) denote
the full subcategory of de Rham representations.

By the general formalism from §5, for V' € Rep‘éRp (Gk) we have a Byr-linear G'x-compatible
comparison isomorphism

ay : Bar @ Dar(V) — Bar ®q, V

and the subcategory Rep‘aRp(G k) € Repq,(Gk) is stable under passage to subquotients,
tensor products, and duals (and so also exterior and symmetric powers), and moreover the
functor Dgg : Rep(éRp(G k) — Vecg is faithful and exact and commutes with the formation
of duals and tensor powers (and hence exterior and symmetric powers).

Since duality does not affect whether or not the de Rham property holds, working with
Dgg is equivalent to working with the contravariant functor

Dig(V) := Dar(V") ~ Homq,c,](V; Bar):

this alternative functor can be very useful. In general D}, (V) is a finite-dimensional K-
vector space, and its elements correspond to Q,[Gkl-linear maps from V into Bgr. In
particular, for any V' € Repq, (G ) the collection of all such maps spans a finite-dimensional
K-subspace of Bgg, generally called the space of p-adic periods of V' (or of V'V, depending
on one’s point of view). This space of periods for V' is the only piece of Byr that is relevant
in the formation of D} (V). As an example, if V' is an irreducible Q,[G k]-module then any
nonzero map from V' to Byg is injective and so D (V') # 0 precisely when V' occurs as a
subrepresentation of Bgr. In general dimg D’ (V) < dimgq, (V'), so an irreducible V' appears
in Bgr with finite multiplicity at most dimq,(V"), and this maximal multiplicity is attained
precisely when V' is de Rham (as this is equivalent to V' being de Rham).

Example 6.1.1. For n € Z, Dar(Q,(n)) = Kt™" if we view Q,(n) as Q, with Gk-action by
x". This is 1-dimensional over K, so Q,(n) is de Rham for all n.

The output of the functor Dqr has extra K-linear structure (arising from additional struc-
ture on the K-algebra Bggr), namely a K-linear filtration arising from the canonical K-linear
filtration on the fraction field Bgr of the complete discrete valuation ring B;R over K. Be-
fore we explain this in §6.3 and axiomatize the resulting finer target category of Dgr (as a
subcategory of Vecy), in §6.2 we review some terminology from linear algebra.
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6.2. Filtered vector spaces. Let F' be a field, and let Vecp be the category of finite-
dimensional F-vector spaces. In Definition 4.1.1 we defined the notion of a filtered vector
space over F. In the finite-dimensional setting, if (D, {Fil’(D)}) is a filtered vector space
over F' with dimz D < oo then the filtration is exhaustive if and only if Fil'(D) = D for
i < 0 and it is separated if and only if Fil'(D) = 0 for i > 0. We let Filp denote the
category of finite-dimensional filtered vector spaces (D, {Fil’(D)}) over F equipped with an
exhaustive and separated filtration, where a morphism between such objects is a linear map
T : D' — D that is filtration-compatible in the sense that T'(Fil'(D’)) C Fil'(D) for all 4.

In the category Filg there are good functorial notions of kernel and cokernel of a map
T : D' — D between objects, namely the usual F-linear kernel and cokernel endowed
respectively with the subspace filtration

Fil'(ker T) := ker(T) N Fil'(D") C ker T
and the quotient filtration
Fil’(coker T') := (Fil'(D) + T'(D"))/T(D’) C coker(T).

These have the expected universal properties (for linear maps D — D’ killed by T and
linear maps D — Dy composing with T to give the zero map respectively), but beware that
Filg is not abelian!!

More specifically, it can happen that kerT" = cokerT = 0 (i.e., T is an F-linear iso-
morphism) but 7" is not an isomorphism in Filz. The problem is that the even if T is an
isomorphism when viewed in Vecp, the filtration on D may be “finer” than on D’ and so
although T'(Fil'(D’)) C Fil'(D)) for all i, such inclusions may not always be equalities (so
the linear inverse is not a filtration-compatible map).

Example 6.2.1. For example, we could take D = D’ as vector spaces and give D’ the trivial
filtration Fil'(D') = D’ for i < 0 and Fil'(D’) = 0 for i > 0 whereas we define Fil'(D) = D
for i < 4 and Fil'(D) = 0 for i > 4. The identity map T is then bijective but not an
isomorphism in Filg. Thus, the forgetful functor Filp — Vecp loses too much information
(though it is a faithful functor).

Despite the absence of a good abelian category structure on Filg, we can still define basic
notions of linear algebra in the filtered setting, as follows.

Definition 6.2.2. For D, D’ € Filp, the tensor product D ® D' has underlying F-vector
space D ®p D’ and filtration

Fil"(D® D') = Y Fil’(D) ®r Fil(D')

that is checked to be exhaustive and separated. The unit object F[0] is I as a vector space
with Fil'(F[0]) = F for i < 0 and Fil'(F[0]) = 0 for i > 0. (Canonically, D ® F[0] ~
F[0] ® D ~ D in Filp for all D.)

The dual DV of D € Filp has underlying F-vector space given by the F-linear dual
Homp (D, F), and has the (exhaustive and separated) filtration

Fil'(DY) = (Fil'' D)* := {¢ € D | Fil'"(D) C ker (}.
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The reason we use Fil' /(D) rather than Fil~*(D) is to ensure that F[0]Y = F[0] (check this
identification!).
A short exact sequence in Filg is a diagram

0—D —D—-D"—-0

in Filg that is short exact as vector spaces with D" = ker(D — D") (i.e., D’ has the subspace
filtration from D) and D" = coker(D — D") (i.e., D" has the quotient filtration from D).
Equivalently, for all ¢ the diagram

(6.2.1) 0 — Fil'(D') — Fil'(D) — Fil'(D") — 0
is short exact as vector spaces.

There is also a naturally induced filtration on Hompg(D’, D) for D, D’ € Filp, and it is
useful that this can be defined in two equivalent ways. This is discussed in Exercise 6.4.1.

Ezxample 6.2.3. The unit object F'[0] is naturally self-dual in Filr, and that there is a natural
isomorphism DY ® D'V ~ (D ® D')V in Filp induced by the usual F-linear isomorphism.
Likewise we have the usual double-duality isomorphism D ~ DYV in Filp, and the evaluation
morphism D ® DY — F[0] is a map in Filp.

Example 6.2.4. There is a natural “shift” operation in Filg: for D € Filp and n € Z, define
Din] € Filp to have the same underlying F-vector space but Fil'(D[n]) = Fil"*"(D) for all
i € Z. (There seems little risk of confusion caused by the notation F'[0] that we use for the
unit object.)

We have D[n]¥ ~ DY[—n] in Filp in the evident manner, and shifting can be passed
through either factor of a tensor product.

Observe that if T': D' — D is a map in Filp there are two notions of “image” that are
generally distinct in Filp but have the same underlying space. We define the image of T' to
be T'(D’) C D with the subspace filtration from D. We define the coimage of T' to be T'(D')
with the quotient filtration from D’. Equivalently, coimT = D’/ker T with the quotient
filtration and im T = ker(D — coker T') with the subspace filtration. There is a canonical
map coiml' — im 7T in Filg that is a linear bijection, and it is generally not an isomorphism
Definition 6.2.5. A morphism 7' : D’ — D in Filp is strict if the canonical map coim T —
im 7" is an isomorphism, which is to say that the quotient and subspace filtrations on 7'(D’)
coincide.

There is a natural functor gr = gr® : Filp — Grp s to the category of finite-dimensional
graded F-vector spaces via gr(D) = @;Fil’(D)/Fil""'(D). This functor is dimension-
preserving, and it is exact in the sense that if carries short exact sequences in Filgp (see
Definition 6.2.2, especially (6.2.1)) to short exact sequences in Grpy. By choosing bases
compatible with filtrations we see that the functor gr is compatible with tensor products in
the sense that there is a natural isomorphism

gr(D) @ gr(D') ~ gr(D ® D)

in Grps for any D, D’ € Filp, using the tensor product grading on the left side and the
tensor product filtration on D ® D’ on the right side.
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6.3. Filtration on Dgr. For V € Repq (Gk), the K-vector space Dar(V') = (Bar®V)“* €
Veck has a natural structure of object in Filg: since Bqr has an exhaustive and separated
G g-stable K-linear filtration via Fil'(Bgr) = t'Bix, we get an evident K-linear Gg-stable
filtration {Fil'(Bggr) ®q, V} on Bar ®q, V, so this induces an exhaustive and separated
filtration on the finite-dimensional K-subspace Dgr(V') of Gk-invariant elements. Explicitly,

Fil'(Dgr(V)) = (' Bjz ®q, V) .

The finite-dimensionality of Dggr(V') is what ensures that this filtration fills up all of Dgg (V)
for sufficiently negative filtration degrees and vanishes for sufficiently positive filtration de-
grees.

Example 6.3.1. For n € Z, Dgr(Qp(n)) is 1-dimensional with its unique filtration jump in
degree —n (i.e., gr~" is nonzero).

Proposition 6.3.2. If V is de Rham then V is Hodge—Tate and gr(Dar(V)) = Dur(V) as
graded K -vector spaces. In general there is an injection gr(Dar(V)) < Dur(V') and it is an
equality of Cg-vector spaces when V is de Rham.

The inclusion in the proposition can be an equality in some cases with V' not de Rham,
such as when Dy (V) =0 and V # 0.

Proof. By left exactness of the formation of Gi-invariants, we get a natural K-linear injection
gr(Dar(V)) — Dur(V)

for all V € Repr(GK) because gr(Bgqr) = Bur as graded Cg-algebras with Gg-action.
Thus,

for all V. In the de Rham case the outer terms are equal, so the inequalities are all equalities.
[ |

In the spirit of the Hodge-Tate case, we say that the Hodge—Tate weights of a de Rham
representation V' are those ¢ for which the filtration on Dgg(V) “jumps” from degree i to
degree i+ 1, which is to say gr'(Dqr(V)) # 0. This says exactly that the graded vector space
gr(Dar(V)) = Dur(V) has a nonzero term in degree 4, which is the old notion of Cx ®q, V
having 7 as a Hodge—Tate weight. The multiplicity of such an i as a Hodge-Tate weight is
the K-dimension of the filtration jump, which is to say dimg gr'(Dgr(V)).

Since D4r(Qp(n)) is a line with nontrivial gr™", we have that Q,(n) has Hodge Tate
weight —n (with multiplicity 1). Thus, sometimes it is more convenient to define Hodge—
Tate weights using the same filtration condition (gr’ # 0) applied to the contravariant functor
Dir(V) = Dar(VY) = Homq,[c,](V, Bar) so as to negate things (so that Q,(n) acquires
Hodge-Tate weight n instead).

The general formalism of §5 tells us that Dgr on the full subcategory Rep%R(G k) is exact
and respects tensor products and duals when viewed with values in Vecg, but it is a stronger
property to ask if the same is true as a functor valued in Filgx. For example, when Dgr on
Rep‘g{p (Gk) is viewed with values in Filk it is a faithful functor, since the forgetful functor
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Filxy — Vecg is faithful and Dgg is faithful when valued in Vecg. However, it is less
mechanical to check if the general isomorphism

DdR(V,) QK DdR(V) ~ DdR(V, ®Qp V)

in Veck for de Rham representations V' and V"’ is actually an isomorphism in Filx (using the
tensor product filtration on the left side). Fortunately, such good behavior of isomorphisms
relative to filtrations does hold:

Proposition 6.3.3. The faithful functor Dgr : Rep‘aRp(GK) — Filg carries short exact
sequences to short exact sequences and is compatible with the formation of tensor products
and duals. In particular, if V is a de Rham representation and

0=V -V -=V"=0
is a short exact sequence in Repq (Gr) (so V' and V" are de Rham) then Dar (V') € Dar (V)

has the subspace filtration and the linear quotient Dar(V") of Dar(V') has the quotient fil-
tration.

Once this proposition is proved, it follows that Dgr with its filtration structure is com-
patible with the formation of exterior and symmetric powers (endowed with their natural
quotient filtrations as operations on Filg).

Proof. For any short exact sequence

(6.3.1) 0=V -V->V"-0
in Repq, (Gk) the sequence
(6.3.2) 0 — Fil'(Dar (V")) — Fil'(Dar(V)) — Fil'(Dar (V"))

is always left-exact, but surjectivity may fail on the right. However, when V is de Rham all
terms in (6.3.1) are Hodge—Tate and so the functor Dyr applied to (6.3.1) yields an exact
sequence. Passing to separate graded degrees gives that the sequence of gri(Dyr(-))’s is
short exact, but this is the same as the gr'(Dggr(-))’s since V', V, and V" are de Rham (by
Theorem 5.2.1(2)). Hence, adding up dimensions of gr’’s for j < i gives

dimg Fil'(Dar(V)) = dimg Fil'(Dgr (V")) + dimg Fil'(Dar(V")),

so the left-exact sequence (6.3.2) is also right-exact in the de Rham case. This settles the
exactness properties for the Filg-valued Dygr, as well as the subspace and quotient filtration
claims.

Now consider the claims concerning the behavior of Dgg with respect to tensor product
and dual filtrations. By the general formalism of §5 we have K-linear isomorphisms

DdR(V) ®K DdR(V,) ~ DdR(V ®Qp V,), DdR(V)V ~ DdR(V\/)
for V.V’ € Rep‘g‘p (Gk). The second of these isomorphisms is induced by the mapping
Dar(V) @k Dar(V") = Dar(V ®q, V) — Dar(Q,) = K[0],

and so if the tensor-compatibility is settled then at least the duality comparison isomorphism
in Vecg is a morphism in Filg.
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The construction of the tensor comparison isomorphism for the Vecg-valued Dgr rests
on the multiplicative structure of Bggr, so since Bgg is a filtered ring it is immediate that
the tensor comparison isomorphism in Vecg for Dggr is at least a morphism in Filg. In
view of the finite-dimensionality and the exhaustiveness and separatedness of the filtrations,
this morphism in Filgx that is known to be an isomorphism in Vecy is an isomorphism in
Filx precisely when the induced map on associated graded spaces is an isomorphism. But
gr(Dgr) = Dyr on de Rham representations and gr : Filxy — Grg s is compatible with the
formation of tensor products, so our problem is reduced to the Hodge—Tate tensor comparison
isomorphism being an isomorphism in Grg ; (and not just in Vecy). But this final assertion
is part of Theorem 2.4.11. The same mechanism works for the case of dualities. |

The following corollary is very useful, and is often invoked without comment.

Corollary 6.3.4. For V € Repq (Gk) and n € Z, V is de Rham if and only if V(n) is
de Rham.

Proof. By Example 6.3.1, this follows from the tensor compatibility in Proposition 6.3.3 and
the isomorphism V ~ (V(n))(—n). [

Ezxample 6.3.5. We now give an example of a Hodge—Tate representation that is not de Rham.
Consider a non-split short exact sequence

(6.3.3) 0—-Q—V —Qul)—0

in Repg, (Gk). The existence of such a non-split extension amounts to the non-vanishing of
H.,..(Gr,Qy(—1)), and at least when k is finite such non-vanishing is a consequence of the
Euler characteristic formula for H'’s in the Q,-version of Tate local duality.

We now show that any such extension V' is Hodge-Tate. Applying Cx ®q, (+) to (6.3.3)
gives an extension of Ck(1) by Ck in Repg, (Gk), and H}  (Gx, Cg(—1)) = 0 by the
Tate-Sen theorem. Thus, our extension structure on Cx ®q, V is split in Repg, (Gk),
so implies Cx ®q, V ~ Ck ®© Ck(—1) in Repg, (Gk). The Hodge Tate property for V'
therefore holds. However, we claim that such a non-split extension V' is never de Rham!

There is no known elementary proof of this fact. The only known proof rests on very deep
results, namely that de Rham representations must be potentially semistable in the sense of
being Bs; x-admissible after restriction to G for a suitable finite extension K’/K inside of
K, where Bk € Bar,x» = Bar,k is Fontaine’s semistable period ring. It is an important
fact that the category of By g/-admissble p-adic representations of G'x» admits a fully faithful
functor Dy g into a concrete abelian semilinear algebra category (of weakly admissible
filtered (¢, N)-modules over K’), and that the Ext-group for Dy x/(Q,(1)) by Dy x(Q,) in
this abelian category can be shown to vanish via a direct calculation in linear algebra. By
full faithfulness of D g+, this would force the original extension structure (6.3.3) on V' to
be Q,[Gr/]-linearly split. But the restriction map H'(Gg, Q,(—1)) — H' (Gxr, Q,(—1)) is
injective due to [K' : K] being a unit in the coefficient ring Q,, so the original extension
structure (6.3.3) on V' in Repq, (G k) would then have to split, contrary to how V' was chosen.

Ezample 6.3.6. To compensate for the incomplete justification (at the present time) of the
preceding example, we now prove that for any extension structure

(6.3.4) 0=V -V ->V"-0
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such that V' and V" are de Rham (hence Hodge-Tate) and the Hodge—Tate weights of V'
are all strictly larger than those of V", the representation V' is de Rham. (A basic example is
V" =Q,and V' = Q,(r) with > 0. Likewise, by induction we see that any upper-triangular
representation V € Repr(G k) having diagonal characters that are finitely-ramified twists
of powers x® for which the exponents a; are strictly decreasingis a de Rham representation.)

Before proving this claim, we first make a side remark that will not be used. If k is finite
then by Kummer theory the space of isomorphism classes of such extensions with V" = Q,,
and V' = Q,(1) has Q,-dimension 1+ [K : Q,], and a calculation with weakly admissible
filtered (¢, N)-modules shows that there is only a 1-dimensional space of such extensions for
which V' is semistable (i.e., By-admissible), namely those V’s that arise from “Tate curves”
over K. Hence, these examples exhibit the difference between the de Rham property and
the much finer admissibility property with respect to the finer period ring By, C Bgr.

The de Rham property for V' as above is the statement that dimg Dyr (V) = dimg, (V).
It is harmless to make a Tate twist, so we may and do arrange that the Hodge-Tate weights
of V" are all > 1 and those of V" are < 0. In particular, Dar(V") = (Bji ®q, V")“%. We
have a left exact sequence

0 — DdR(V,) — DdR(V) — DdR(V”)

in Filg with dimg Dgr (V') = dimg, V" and dimg Dgr (V") = dimq, V". Hence, our problem
is to prove surjectivity on the right, for which it suffices to prove that the natural map
(Bir ®q, V)9 — (Blz ®q, V")“% = Dar (V") is surjective.

Applying Bj ®q, (-) to the initial short exact sequence (6.3.4) gives a Gg-equivariant
short exact sequence of finite free Bjz-modules, so it admits a Bjgp-linear splitting. The
problem is to give such a splitting that is G x-equivariant, and the obstruction is a continuous
1-cocycle on Gk valued in the topological module Bj; ®q, V’. This has the filtration by
G i-stable closed BIR-submodules t”B;rR ®q, V' with n > 0. (Recall from Exercise 4.5.3 that
multiplication by any uniformizer of B, is a closed embedding, so t"Bjy ®q, V' has as its
subspace topology exactly its topology as a free module of rank 1 over the topological ring

Bii.) It suffices to prove H}, (Gk, Bjz ®q, V') = 0. The Gg-equivariant exact sequence
0 — " By ®q, V' — t"Bjy @q, V' = (Ck @q, V')(n) = 0

is topologically exact for n > 0. Since Cx ®q, V' ~ @Cgx(m;) in Repg, (Gk) for some

m; = 1,80 m; +n >1foralln >0 and all ¢, H,,(Gk, (Cx ®q, V')(n)) =0 for all n > 0

by the Tate—Sen theorem. We can therefore use a successive approximation argument with

continuous 1-cocycles and the topological identification By = lim By /t"Bjy to deduce

that H . (Gk, Big ®q, V') = 0. (Concretely, by successive approximation we exhibit each

continuous 1-cocycle as a 1-coboundary.)

An important refinement of Proposition 6.3.3 is that the de Rham comparison isomorphism
is also filtration-compatible:

Proposition 6.3.7. For V € Rep‘éRp(GK), the G -equivariant Bgg-linear comparison iso-
morphism

(67 BdR ®K DdR(V) ~ BdR ®Qp V
respects the filtrations and its inverse does too.
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Proof. By construction « is filtration-compatible, so the problem is to prove that its inverse is
as well. It is equivalent to show that the induced Byr-linear map gr(«) on associated graded
objects is an isomorphism. On the right side the associated graded object is naturally
identified with Byr ®q, V. For the left side, we first recall that (by a calculation with
filtration-adapted bases) the formation of the associated graded space of an arbitrary filtered
K-vector space (of possibly infinite dimension) is naturally compatible with the formation
of tensor products (in the graded and filtered senses), so the associated graded object for
the left side is naturally identified with Byt ® gr(Dgr(V)).

By Proposition 6.3.2, the de Rham representation V' is Hodge—Tate and there is a natural
graded isomorphism gr(Dgr(V)) ~ Dpr(V). In this manner, gr(a) is naturally identified
with the graded comparison morphism

anr : Bur ®k Dur(V) — Bur ®q, V
that is a graded isomorphism because V' is Hodge—Tate. |

Recall that the construction of Bj; as a topological ring with Gk-action only depends
on O¢, endowed with its Gk-action. Thus, replacing K with a discretely-valued complete
subfield K" C Ck has no effect on the construction (aside from replacing Gk with the closed
subgroup Gy within the isometric automorphism group of Cg). It therefore makes sense
to ask if the property of V' € Repq, (Gk) being de Rham is insensitive to replacing K with
such a K| in the sense that this problem involves the same period ring Bqr throughout (but
with action by various subgroups of the initial Gx).

For accuracy, we now write Dyr x (V') := (Bar ®q, V)9x | so for a discretely-valued com-
plete extension K'/K inside of Cx we have Dag x/(V) = (Bar ®q, V)“%'. There is an
evident map

K' @k Dar.x (V) — Dar g (V)
in Filg for all V' € Repq, (Gx) via the canonical compatible embeddings of K and K’ into

the same B, (determined by the embedding of W(k)[1/p] into Bj; and considerations with
Hensel’s Lemma and the residue field Cg).

Proposition 6.3.8. For any complete discretely-valued extension K'/K inside of Cx and
any V € Repr(GK), the natural map K' @k Dar (V) — Dar.i (V') is an isomorphism in
Filg:. In particular, V' is de Rham as a Gg-representation if and only if V' is de Rham as
a Gr-representation.

As special cases, the de Rham property for G can be checked on Iy = G and it is
insensitive to replacing K with a finite extension inside of Cg. It must be emphasized that
the insensitivity of the de Rham condition to ramified extension on K is a “bad” feature,
akin to not distinguishing between good reduction and potentially good reduction for abelian
varieties. The more subtle (and important) properties of being a crystalline or semi-stable
representation will exhibit sensitivity to ramified extension on K, as we will explain and
illustrate in §9.3.

Proof. The fields K™ and K have the same residue field k, so by finiteness of the absolute

ramification we see that the resulting extension K — KM of completed maximal unram-
ified extensions is of finite degree. Hence, it suffices to separately treat two special cases:
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K'/K of finite degree and K’ = K. Tn the case of finite-degree extensions a transitivity
argument reduces us to the case when K'/K is finite Galois. It follows from the defini-
tions that for all i € Z, the finite-dimensional K’-vector space Fil'(Dgr x/(V)) has a natural
semilinear action by Gal(K’/K) whose K-subspace of invariants is Fil'(Dgr r(V)). Thus,
classical Galois descent for vector spaces as in (2.4.3) (applied to K'/K) gives the desired
isomorphism result in Filg in this case. -

To adapt this argument to work in the case K’ = K", we wish to apply the “com-
pleted unramified descent” argument for vector spaces as in the proof of Theorem 2.4.6.
It is follow from the definitions that for all i € Z, the finite-dimensional K’-vector space
Fil'(Dgr (V) has a natural semilinear action by Gy /Ix = G} and the K-subspace of
invariants is Fil'(Dgr x (V). Hence, to apply the completed unramified descent result we
just have to check that the G-action on each Fil'(Dgg x/(V)) is continuous for the natural
topology on this finite-dimensional K’-vector space. More generally, consider the Gx-action
on t'Bi; ®q, V. We view this as a free module of finite rank over the topological ring
Bj; (using the topology from Exercise 4.5.3). It suffices to prove two things: (i) the G-
action on t' B, ®q, V relative to the finite free module topology is continuous, and (ii) any
finite-dimensional K’-subspace of ¢’ Bl ®q, V inherits as its subspace topology the natural
topology as such a finite-dimensional vector space (over the p-adic field K’). Note that for
the proof of (ii) we may rename K’ as K since this does not affect the formation of Bz, so
it suffices for both claims to consider a common but arbitrary p-adic field K.

For (i), we can use multiplication by ¢~* and replacement of V by V(i) to reduce to
checking continuity of the G-action on By, ®q, V for any V € Repr(G k). Continuity of
the Gx-action on V and on Bjy then gives the continuity of the G x-action on BJ; ®q, V by
computing relative to a Q,-basis of V. To prove (ii) with K’ = K, we may again replace V'
with V' (7) to reduce to the case i = 0. It is harmless to replace the given finite-dimensional
K-subspace of Bjp ®q, V with a larger one, so by considering elementary tensor expansions
relative to a choice of Q,-basis of V' we reduce to the case when the given finite-dimensional
K-vector space has the form W ®q, V for a finite-dimensional K-subspace of Bj;. We may
therefore immediately reduce to showing that if W C B is a finite-dimensional K-subspace
then its subspace topology from Bjy is its natural topology as a finite-dimensional K-vector
space. This is part of Lemma 4.4.12. [ |

Ezxample 6.3.9. In the 1-dimensional case, the Hodge-Tate and de Rham properties are
equivalent. Indeed, we have seen in general that de Rham representations are always Hodge—
Tate (in any dimension), and for the converse suppose that V' is a 1-dimensional Hodge-Tate
representation. Thus, it has some Hodge-Tate weight i, so if we replace V' with V' (—i) (as
we may without loss of generality since every Q,(n) is de Rham) we may reduce to the case
when the continuous character ¢ : G — Z of V' is Hodge-Tate with Hodge-Tate weight 0.
Hence, Cg (1)9% # 0, so by the Tate-Sen theorem 1 (Ix) is finite. By choosing a sufficiently
ramified finite extension K'/K we can thereby arrange that ¢(Ix/) = 1. Since the de Rham

property is insensitive to replacing K with K", we thereby reduce to the case of the trivial
character, which is de Rham.
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The same argument shows that any finite-dimensional p-adic representation W of G with
open kernel on I is de Rham with 0 as the only Hodge-Tate weight, and that Daqr(W) is
then a direct sum of copies of the unit object K[0] in Fil.

Example 6.3.9 shows that the exact faithful tensor functor Dygp : Rep‘aRp(G k) — Filg is
not fully faithful. Indeed, in Example 6.3.9 we saw that if p : Gx — GL(W) is a p-adic
representation with finite image on I then W is necessarily de Rham and Dggr (W) € Filg
is a direct sum of copies of the unit object K[0] in Filk; this has lost all information about
W beyond dimq, W. In particular, the functor Dgg : Rep(éRp(G k) — Filg really is not
fully faithful. In effect, Dgyr is insensitive to finite ramification information. This is a
serious deficiency, akin to losing the distinction between good reduction and potentially
good reduction.

To improve on the situation we need to do two things. First, we have to replace Bgr with
a period ring having “finer structure”, in the same spirit as how Bgr has finer structure
than Byt (a filtration rather than just a grading) and is a kind of refinement of By (i.e.,
gr(Bgar) =~ Bpur). More specifically, we will find a Gk-stable Ky-subalgebra B C Bgr
that admits a finer structure than subspace filtration. The second thing we have to do is to
study properties of the functor D;s := Dp_, with values in a richer linear algebra category
than filtered vector spaces. The extra linear algebra structure that we seek is a synthesis of
filtrations and Frobenius operators, and in §7 we will look at a number of examples arising
from algebraic geometry which point the way to the right kind of synthesis which leads to a
good generalization of the de Rham condition on p-adic representations of G .

6.4. Exercises.

FEzercise 6.4.1. Let F' be a field. For D, D’ € Filp we can naturally endow Hompg (D', D)
with a structure in Filp (denoted Hom(D’, D)). This can be done in two equivalent ways.
First of all, the usual linear isomorphism D®p D’ ~ Homp (D', D) imposes a Filg-structure
by using the dual filtration on D’ and the tensor product filtration on D ®p D’".

This is too ad hoc to be useful by itself, so the usefulness rests on the ability to also
describe this filtration in more direct terms in the language of Hom’s: prove that this ad hoc
definition yields

Fil'(Homp (D', D)) = {T € Homp (D', D) | T(Fi(D")) C Fi*(D) for all j}.

In other words, Fil'(Homg (D', D)) = Homgy,. (D', D[i]) for all i € Z. (Hint: Compute using
bases of D and D’ adapted to the filtrations on these spaces.) What does this say for i = 07
Or D = F[0]?

Ezercise 6.4.2. Verify the successive approximation argument at the end of Example 6.3.6.

FEzercise 6.4.3. Although p-adic Hodge theory addresses finite-dimensional Q,-linear repre-
sentations, in practice one often has to work with continuous linear representations of G g on
finite-dimensional vector spaces V' over a finite extension £/Q,. In such cases one may want
a variant of the basic formalism, adapted to E-linear structures. At least for the de Rham
and Hodge—Tate properties (for which replacing K with a finite extension is harmless), it is
generally harmless to suppose that K is large enough to contain a Galois closure of E over
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Q,, and then it makes sense to try to redo the theory with E replacing Q, in some of the
basic constructions.

In this exercise we take up the first interesting question in this direction: does Example
6.3.9 carry over to 1-dimensional representations over a finite extension E/Q,? Let v :
Gk — Oy be a continuous character. This is an object Vy, in Repg (Gx) with Q,-dimension
[E : Qp]. We aim to prove that Vj, is de Rham if (and only if) it is Hodge-Tate, so we may
and do assume that K contains a Galois closure of £ over Q,. The method of solution of
Example 6.3.9 cannot be used, since €, near the identity is generally not Z,.

(1) Prove that Cx ®q, Vi ~ [[, Cx(¢?) in Repg, (Gk), where o ranges through all
Q,-embeddings £ — K (and ¢ = o0 01 is viewed as a K *-valued character of
Gk). Deduce that V,, is Hodge-Tate if and only if there are integers n, such that
Ck(¢7) ~ Cg(x™) for all 0. (Beware that the n,’s really can be different from
each other. This already occurs for elliptic curves with complex multiplication: if L
is an imaginary quadratic field that is inert at p and if F is an elliptic curve over L
with complex multiplication by L then for K = L, the representation V,(Ek) is a 1-
dimensional object in Repy (G ), say with G'kx-action given by a continuous character
¢ 1 Gg — K, and as an object in Repq, (Gk) is it Hodge-Tate with Hodge-Tate
weights {0, 1}. Hence, Vj, >~ V,(EK) has two distinct HodgeTate weights.)

(2) For W € Repg(Gk), define Dyr (W) = (Bar @x W)®% € Filg. Prove that for
W € Repgp(Gk), Dar(W) = [[, Dar,x(W?) in Filg, where o ranges through all
Q,-embeddings £ — K and W° = K ®,5 W € Repg(Gk). Deduce that each
Dgr k(¢7) is either 0 or 1-dimensional over K, and that Vj, if de Rham if and only
if DdR’K(Q/JU) 7A 0 for all o.

(3) Using a suitable Tate twist, reduce to showing that if ) : Gx — O} is continuous
and CK(Q/J) >~ CK then DdR,K(¢) 7é 0.

(4) Assuming Cg(v)) =~ Cg, prove that H'(Gg, Ck(¥x™)) = 0 for all n > 1, and
deduce that H(Gk,tBiz(¥)) = 0. Finally, conclude that Dgg x(¢)) maps onto
HY(Gg,Ck(¢¥)) = K, 50 Dar i (1) # 0, as desired.

7. WHY FILTERED ISOCRYSTALS?

To motivate how to generalize Filx to classify “good” p-adic representations, we shall now
study good reduction for an abelian variety A over a p-adic field K. By “good reduction”
we mean that A is the K-fiber of an abelian scheme (i.e., smooth proper group scheme over
Spec Ok with connected geometric fibers). For example, when A is an elliptic curve this
amounts to the existence of a Weierstrass model over 0k with smooth reduction. Below
we will provide a summary of some basic facts from the theory of group schemes, assuming
the reader has some prior experience with the concept of a group variety, and knows how to
think functorially with schemes (i.e., Yoneda’s Lemma). A nice introduction to the subject
of group schemes is given in [36, Ch. 3].

(In [37, Ch. 6] there is given a self-contained development of the basic theory of abelian
schemes; the main point to keep in mind is that they are always commutative, just like
abelian varieties, and they exhibit many of the familiar features of abelian varieties. One
should think of an abelian scheme A — S as a family of abelian varieties parameterized
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by S. The most “concrete” examples of abelian schemes beyond Weierstrass models with
unit discriminant are the relative Jacobians Pic% /s for a smooth proper curve X — S with
connected geometric fibers.)

For any prime ¢, the ¢-adic representation space

Vi(A) = Qi g, lim A[")(K)

for Gk encodes information about A. However, the case ¢ # p is far simpler to understand,
and we will begin with this case in order to get some intuition. The most basic interesting
fact is the Néron-Ogg-Shafarevich criterion [9, 1.2/8,7.4/5]: A has good reduction if and only
if V,(A) is unramified. This is a striking result: a Galois-theoretic property (unramifiedness)
implies a geometric property (existence of a nice integral model over Of). Of course, its
proof uses an a-priori theory of best possible integral models over O, namely the theory of
Néron models.

The Néron-Ogg-Shafarevich criterion is extremely useful in the study of abelian varieties,
but it requires ¢ # p. It is natural to wonder if there is a property P of general p-adic repre-
sentations of G such that good reduction for A is equivalent to V,(A) satisfying property
P. We already saw in Question 1.1.3 and the discussion following it that the most naive
guess (i.e., unramifiedness) no longer works.

The right answer to the problem of formulating a Néron-Ogg-Shafarevich criterion “at p”
will lead us to some new kinds of objects in linear algebra, merging filtered objects from Fil x
and Kjy-vector spaces equipped with a bijective Frobenius endomorphism in the spirit of §3
(with the field & there replaced by the much simpler field K, = W(k)[1/p] equipped with
its canonical Frobenius automorphism). These combined structures will be called filtered
isocrystals, and they are ubiquitous throughout p-adic Hodge theory. A study of abelian
varieties will lead us to many interesting examples of filtered isocrystals.

7.1. Finite flat group schemes. Grothendieck gave a good analogue of the Néron-Ogg-
Shafarevich criterion for ¢ = p. He recognized that the criterion can be formulated in a
language different from Galois representations (using group schemes), as we will present in
Remark 7.1.12, and he then used the theory of Néron models to prove that his modified
formulation works even when ¢ = p. Ultimately p-adic Hodge theory does provide a purely
Galois-theoretic criterion for good reduction: a necessary and sufficient condition for A to
have good reduction is that V,(A) is a crystalline G g-representation, which is to say that it
is B.is-admissible for a certain “crytalline period ring” B € Bgr to be introduced in §9.1.
This does not obviate the need for Grothendieck’s criterion! In fact, the way good reduction
is connected to p-adic Hodge theory is via Grothendieck’s criterion: Grothendieck established
an equivalence between good reduction (for abelian varieties) and a property involving group
schemes, and work of Fontaine [19, 5.5, 6.2], Breuil [10, Thm. 1.4], and Kisin [30, Cor. 2.2.6]
establishes an equivalence between Grothendieck’s group scheme criterion and the crystalline
condition over any p-adic field K.

Definition 7.1.1. Let S be a scheme. A group scheme over S (or an S-group) is a group
object G — S in the category of S-schemes. That is, there are given maps m : G xg G — G,
1:G— G,and e : S — G over S satisfying the commutative diagrams that characterize
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a group law with inversion and identity. Equivalently (by Yoneda’s Lemma), for any S-
scheme T the set G(T') = Homg(7, G) is endowed with a group structure and this structure
is functorial in 7T'.

A homomorphism of S-group schemes is a map f : G — H that is compatible with the
multiplication and inversion morphisms, and with the identity sections. Equivalently, for all
S-schemes 7', the induced map of sets G(T") — H(T) is a group homomorphism.

The (scheme-theoretic) kernel of an S-group homomorphism f is the S-group scheme
ker f = G Xp., S obtained by pullback of f along the identity section ey : S — H;
functorially, (ker f)(T") = ker(G(T) — H(T)) for every S-scheme T

We are most interested in Definition 7.1.1 for S = Spec K, Spec O, and Spec k. However,
considerations over more general S clarify the initial development of the theory (and are
necessary to give valid arguments via Yoneda’s Lemma).

Example 7.1.2. If E is an elliptic curve over a field k and n is a positive integer, then
the k-group [n] : E — E is finite flat of degree n%. Hence, the scheme-theoretic kernel
E[n] := [n]7%(0) is a finite k-group scheme of degree n?, even if char(k)|n. For example, if
E is a supersingular elliptic curve and char(k) = p then E[p] is a finite k-group scheme of
degree p? but it has only the trivial geometric point (so it is an infinitesimal k-scheme).
This example is the reason why group schemes are essential for a good understanding
of torsion in abelian varieties in positive characteristic. (The scheme-theoretic kernel of an
isogeny is another good example: it could be nontrivial but have only the trivial geometric

point, such as the Frobenius isogeny of an elliptic curve.)

Ezxample 7.1.3. The Z-group schemes G, and G,, correspond to the additive structure on
the affine line and the multiplicative structure on the complement of the origin. The cor-
responding functors associate to any scheme 7' the additive group of global functions on T’
and the multiplicative group of global units on T respective. See Exercise 7.4.1.

Observe that if G is an S-group scheme and S" — S is any map of schemes then the base
change G' = G xg S’ has a natural structure of S’-group scheme. As an illustration of the
utility of base change with group schemes, we note that many classical “matrix groups” are
really group schemes over Z, and base change to fields recover the classical viewpoint of such
matrix groups as group varieties defined over a field via “universal” matrix equations that
are independent of the base field. For example, GL,, SL,, and Sp,, are really affine group
schemes over Z (with GL, having coordinate ring Z[x;;]aet(x,;), etc.), and det : GL,, — GL; is
a Z-group homomorphism whose kernel is SL,,. This viewpoint gives a precise way of saying
that certain group-theoretic considerations with matrices are “universal” (i.e., independent
of a base field) since they are really statements about group schemes over Z.

An important example of a group scheme homomorphism in characteristic p > 0 is the
relative Frobenius morphism. For example, if E is an elliptic curve over a field k& of charac-
teristic p > 0, the relative Frobenius morphism is the degree-p isogeny E — E®) described
by (z,y) — (2P, yP) in Weierstrass coordinates. Its scheme-theoretic kernel if an infinitesimal
k-subgroup scheme of E of degree p. We now explain how to generalize this to all group
schemes in characteristic p > 0.
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Consider a base scheme S over SpecF,. Let Fg : S — S denote the absolute Frobenius
endomorphism (which corresponds to the p-power map on the coordinate ring of any affine
open; it is the identity map on underlying topological spaces). This is functorial in S since
the p-power map commutes with all homomorphisms of F,-algebras. If X is an S-scheme
then we let X® denote the base change S x Fg,s X viewed as an S-scheme via pry; loosely
speaking, X is the scheme obtained from X by replacing the coefficients of the defining
equations over S by their pth powers (but leaving the indeterminates alone).

Definition 7.1.4. The relative Frobenius morphism Fxs : X — X®) is the unique S-map
fitting into the commutative diagram

in which the square is cartesian. Loosely speaking, F'y/s is the map given by pth powers on
coordinates over S.

We emphasize that Fx/s is a map of S-schemes (unlike Fx, which lies over the map Ff).
From the definition one checks:

Lemma 7.1.5. Let X — S be a map of Fp,-schemes. The formation of the relative Frobenius
map Fx s is functorial in X, compatible with arbitrary base change on S (i.e., if X' = §'xg X
then S’ x g XP) is naturally identified with X'® oper S carrying lsr X Fx ;g over to Fxi g1),
and compatible with residue to products over S. In particular, X = G is an S-group scheme
then Fgis : G — G® is an S-group homomorphism.

The notion of a commutative group scheme is defined in an evident manner, and if G — S
is such a group scheme then we write [n]g : G — G to denote the multiplication-by-n map
and

Gn] := ker([n]q)
to denote its kernel. For example, an abelian scheme is always commutative, and we know
from the theory over a field that its torsion subgroup schemes in that case are a powerful
tool in the investigation of the structure of the abelian variety. This example generalizes to
the case of an arbitrary base scheme, as follows.

Let A — S be an abelian scheme with fibers of constant dimension g > 0, and choose
n € Z~y. We are especially interested in the case S = Spec 0. Consider the multiplication
map [n|s : A — A. By the theory of abelian varieties, on geometric fibers over S this
map becomes finite flat with constant degree n?9. It follows by general fibral techniques
(in case S is not the spectrum of a field) that the map [n|s : A — A is finite flat and the
pushforward [n]a.(@4) is locally free of constant rank n??. These properties are inherited by
any base change of [n]4 over its target, so using base change by e4 : S — A gives that the
(scheme-theoretic) n-torsion A[n] := ker([n]4) is a commutative finite flat S-group scheme
whose geometric fibers all have rank n?9.
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As we know from elliptic curves in characteristic p > 0, the number of geometric points
in the fibers of A[n] — S can be considerably less than n?? when p|n. The n-torsion group
schemes A[n] motivate the interest in the following definition.

Definition 7.1.6. Let S be a scheme. A finite flat group scheme over S is a commutative
group scheme f : G — S whose structural morphism to S is finite and flat with f.(0g) a
locally free Os-module of some constant rank r» > 0. We call r the order of the group scheme.

This definition can certainly be given without requiring commutativity, but it is of no
interest to us in such cases. As an example, if A — S is an abelian scheme with fibers of
constant dimension g > 0 then for any integer n > 1 the S-group A[n] is a finite flat group
scheme with order n?9. Here are some more examples illustrating the appropriateness of the
concept of order as defined above.

Ezxample 7.1.7. Let S be a scheme.

(1) If I' is a finite abelian group of size n then the disjoint union I's = [ [ . S of copies
of S indexed by I' has a natural S-group scheme structure via the identitification

FSXSFS: H S

(vy)ETxT

and the group law on I'. (Keep in mind that S may be disconnected!) More con-
cretely, in terms of functors, for any S-scheme T we see that I'g(7T') is the set of
locally constant maps T" — I' endowed with the evident pointwise group structure.
From the definition, f.(Ory) = H%F OUs as an Og-algebra, so I'g is a finite flat group
scheme of order n. We call I'g the constant S-group associated to I'.

(2) The kernel p, of the nth-power map t" : GL; — GL; is a finite flat group scheme of
order n. This is the scheme of nth roots of unity, and its “coordinate ring” over Og
is Os[T)/(T"™ —1).

(3) Similarly, over an F,-scheme S, the kernel am of the p™th-power map " : G, — G,
is a finite flat group scheme of order p™. This is the scheme of p™th roots of 0, and
its “coordinate ring” over Os is Og[T]/(TP"). Although a, and p, are isomorphic as
S-groups, they are not isomorphic as S-groups when S is non-empty. (Try to write
down a homomorphism between them over a geometric point!)

(4) A finite group scheme G over a field k is connected if and only if G,q = Speck
(so G is infinitesimal), since G(k) is always non-empty. Such G arise a lot when
char(k) > 0.

(5) Let E be an elliptic curve over a field k of characteristic p > 0. Then Elp| is a finite
flat k-group scheme of order p?, and E[p](k) has size 1 or p. In particular, E[p] is
never étale, and E/[p] is infinitesimal if and only if E is supersingular.

Remark 7.1.8. If f: G — H is a homomorphism between finite flat group schemes over a
base S, then the kernel ker f is often not flat over S (unless S is the spectrum of a field).
For example, if S = Spec Z[(,] and f : (Z/pZ)s — p, is the S-group map sending j to ¢J for
all j € Z/pZ then ker f has generic fiber {0} of rank 1 but special fiber (Z/pZ)g, of rank p,
so ker f is not S-flat due to rank-jumping in the fibers.
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It is a general theorem of Deligne [38, §1] that a finite flat (commutative!) group scheme is
killed by its order; that is, if G — S has order n then the multiplication map [n]¢ : G — G
is the zero map (i.e., it is the composite of the structure map G — S and the identity
section eg : S — §). If we drop the commutativity requirement on the group scheme then
the analogous assertion is an unsolved problem. Deligne’s theorem has the following nice
consequence (which can be proved in other ways):

Lemma 7.1.9. Let f : G — S be a finite flat group scheme whose order n is a unit on S.
Then G — S is an étale map. In particular, if S = Spec(F) for a field F' and char(F') t n
then G(Fy) is a finite group of size n.

The final part of the lemma is due to the fact that an étale scheme over a separably closed
field is a disjoint union of rational points. In view of this lemma, the most interesting aspects
of the theory of finite flat group schemes involve cases when n is not a unit on S, such as
p-power torsion in an abelian scheme over Spec 0.

Proof. Since f,(0g) is a finite locally free &s-module, it follows from the general theory of
étale maps that f is étale if and only if it is so on geometric fibers over S. Hence, we can
assume that S = Spec(F') for an algebraically closed field F'. In this case étaleness amounts
to being a disjoint union of rational points. Since all physical points of G have residue field
F (as F is algebraically closed), to prove that the artinian coordinate ring of G is a product
of copies of F' we can use translation in G(F') to reduce to showing that the artin local ring
at the identity point has vanishing maximal ideal m. But m/m? is dual to the tangent space
To(G), so it suffices to prove Ty(G) vanishes.

By Deligne’s theorem, the multiplication map [n]¢ : G — G is the zero map, so it factors
as

G — Spec F 5 G.

Applying the Chain Rule, d[n](0) : To(G) — To(G) factors through 0 and hence vanishes.

But we have another way to compute d[n]s(0)! From the definition of a group scheme it can
be checked (as in [36, Ch. II, §4] for group varieties) that m : G x G — G has differential

TO(G) ) TO(G) ~ T(O,O)(G X G) — To(G)
that is ordinary addition. Hence, by the Chain Rule, d(f + h)(0) = df(0) + dh(0) for any
two F-group maps f,h : G = G. By induction, it follows that d[n]z(0) : To(G) — To(G)
is multiplication by n € F for any n € Z. Since d[n]¢(0) has been shown to vanish, we

conclude that n kills the F-vector space Ty(G). But by hypothesis char(F') 1 n, so the only
possibility is To(G) = 0. |

Using terminology from Example 1.2.4, we have a construction in the opposite direction:
Lemma 7.1.10. Let F be a field and Gp = Gal(F/F). The functor X ~» X (Fy) from finite
¢tale F'-schemes to finite Gg-sets is an equivalence of categories and is compatible with fiber

products. In particular, G ~ G(Fy) is an equivalence between the category of finite étale
F-groups and the category of finite Gp-modules.

Proof. Since fiber products are characterized by categorical means, the compatibility with
fiber products is a formal consequence of the categorical equivalence (once it is proved).
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Also, since group objects are characterized in categorical terms involving products, it will
be automatic that the equivalence will restrict to one between group objects, as well as
commutative group objects.

Every finite étale F-scheme becomes totally split (i.e., a disjoint union of rational points)
over some finite Galois extension of F', so it suffices to prove the more precise statement that
for a finite Galois extension F'/F, the functor X ~» X (F’) from finite étale F-schemes split
by F’ to finite Gal(F”/F)-sets is an equivalence (compatibly with change in F”).

The classical Galois descent isomorphism for vector spaces in (2.4.3) is compatible with
tensor products over the base field and so restricts to an equivalence between the category of
finite commutative F-algebras and the category of finite commutative F’-algebras equipped
with an action by Gal(F’/F'). Under this latter equivalence, those F-algebras A that are
finite étale and split by F' are exactly the ones for which A’ = F’ @ A is a finite product of
copies of F’. Hence, we are reduced to the elementary fact that the category of F’-algebras
that are finite products of copies of F’ is equivalent to the category of finite sets via the
formation of F’-rational points. [ |

Lemma 7.1.9 and Lemma 7.1.10 show that over a field I’ of characteristic 0, the theory of
finite flat group schemes is the same as the theory of finite Gp-modules. But this reformu-
lation is not merely linguistic: it enables us to define a good theory of “integral models” for
Galois modules when F' = K is a p-adic field: if M is a finite discrete G g-module then an
integral model for M is a finite flat group scheme .# over 0’ whose generic fiber is the finite
étale K-group scheme associated to M; i.e., M ~ .#(K) as Gg-modules. (In particular,
A has order equal to the size of M.) This concept provides good insight into the role of
unramifiedness in the study of finite G x-modules with order prime to p:

Proposition 7.1.11. The functor & ~~ Zk from finite étale Oy -schemes to finite étale
K -schemes is an equivalence onto the category of finite étale K -schemes X for which X (K)
has unramified G i -action.

In particular, a finite Gx-module with size not divisible by p admits an integral model if
and only if it is unramified, in which case such a model is finite étale and unique.

Proof. The second part follows from the first due to Lemma 7.1.9. As for the first part,
since a finite étale Ok-algebra always has unramified K-fiber (essentially by definition of
étale) we see that the functor lands where we expect. The full faithfulness follows by using
normalization to construct an inverse functor. That is, any finite étale Ok-algebra may be
reconstructed from its unramified K-fiber as the integral closure of Ok in the coordinate
ring of this K-fiber.

Finally, we have to check that any finite étale K-scheme with unramified Gx-action on
its K -points arises as the K-fiber of a finite étale @x-scheme. Passing to physical points,
this says that if K’/K is a finite unramified extension then K’ = K ®g4, A’ for a finite étale
Ok-algebra A'. Simply take A’ = O/ [ |

Remark 7.1.12. Proposition 7.1.11 lets us reformulate the Néron-Ogg-Shafarevich criterion
in a new form: if A is an abelian variety over K and ¢ # p is a prime then A has good
reduction if and only if A[("] admits an integral model ¥, for all n > 1, in which case
Gy =G, 1[0"] for all n > 1.
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In view of Remark 7.1.12, Grothendieck’s version [26, Exp. IX, Thm. 5.13] allowing ¢ = p
is very natural:

Theorem 7.1.13 (Grothendieck). Let A be an abelian variety over K and let ¢ be an arbi-
trary prime. Then A has good reduction if and only if A[("] admits an integral model &, for
alln > 1 with 9, = 9,11[("] (respecting the K-fiber identification A[("] = (A["T|[¢"]) for
alln > 1. In such cases, if o/ is the abelian scheme over O with K-fiber A then necessarily
G, = "] for alln > 1.

In this result, each ¥, has p"-torsion that is equal to the Ok-group ¥, which is flat over
Ok. Such flatness for the p"-torsion of ¢, is a nontrivial condition, in view of Remark
7.1.8. Beware that when ¢ = p it is generally the case that there can be more than one
integral model for a given finite flat K-group scheme (if there is any such model at all!),
but in [39] Raynaud proved that for ¢ = p the integral model is unique if it exists when
e(K) < p — 1, and remarkably without any restriction on e(/K) he showed that in Theorem
7.1.13 with ¢ = p it is actually not necessary to assume ¥, = %,.[¢"] for all n > 1. (More
specifically, he showed that if some integral model exists for A[p"] for all n > 1 then models
can be found satisfying the compatibility requirement in Theorem 7.1.13.)

Using the language of ¢-divisible groups (to be introduced in §7.2) rather than the language
of Galois representations, Theorem 7.1.13 admits the following linguistic reformulation: for
any prime ¢ (especially ¢ = p), an abelian variety A over K has good reduction if and only if
the ¢-divisible group of A extends to an ¢-divisible group over . The utility of this point
of view when ¢ = p is that p-divisible groups over 0k and k admit a very rich structure
theory.

7.2. p-divisible groups and Dieudonné modules. The proof of Theorem 7.1.13 for ¢/ = p
makes essential use of some results of Tate involving p-divisible groups, and the theory of
p-divisible groups is also a useful “testing ground” for many concepts in p-adic Hodge theory.
Thus, we now explain some basic aspects of the theory, with an eye on later applications.
(It must be stressed that the significance of p-divisible groups goes far beyond the contexts
that we will consider.) The basic idea behind the theory of p-divisible groups is to make
a scheme-theoretic substitute for Tate modules when working with group schemes that are
not finite étale (and so cannot be studied as Galois modules via Proposition 7.1.11). It is
instructive to first consider Tate modules from another point of view.

For an abelian variety A of dimension g > 0 over a field F, if ¢ # char(F) is a prime
then the directed system {A[("]} of finite étale F-groups of /-power order can be analyzed in
terms of the associated directed system of Galois modules {A[¢"](F5)} due to Lemma 7.1.10.
Due to the basic exact sequences

0 — A[((F,) — A["](Fy) — A[")(F) — 0
(using /-multiplication to construct the right map), we can repackage this data in terms of
the limit
Ti(4) = lm A|")(F,)
that is a finite free Z,~-module equipped with a continuous Gg-action.

But can we work directly with the directed system {A[¢"]}7 One reason to try to avoid the
inverse limit step is that the directed system makes sense even when ¢ = char(F') (in which



CMI SUMMER SCHOOL NOTES ON p-ADIC HODGE THEORY (PRELIMINARY VERSION) 91

case the Galois-theoretic framework cannot be used). More generally, if A — S is an abelian
scheme with fibers of constant dimension g > 0 and p is a prime, then G,, := A[p"| is a finite
flat p"-torsion group scheme of order p*" for all n > 1 and {G,} is a directed system via
isomorphisms G,, ~ G,,11[p"] for all n > 1. This structure motivates the following definition.

Definition 7.2.1. Let p be a prime and h > 0 an integer. A p-divisible group (or Barsotti-
Tate group) of height h over a scheme S is a directed system G = {G,} of finite flat
group schemes over S such that each G, is p"-torsion of order p™ and the transition map
in: Gy — Gpq1 is an isomorphism of G,, onto G,,.1[p"] for all n > 1.

A morphism f : G — H between p-divisible groups is a compatible system of S-group
maps f, : G, — H, for alln > 1.

If S — S is a map of schemes then G xg S’ := {G,, xg S’} is the p-divisible group of
height h over S’ obtained by base change.

If G = {G,} is a p-divisible group, we will often write G[p"] as convenient shorthand for
G,. For an abelian scheme A — S with fibers of constant dimension g > 0, we sometimes
write A[p™] to denote the associated p-divisible group {A[p™]} over S.

Let us see how p-divisible groups generalize Tate modules. Suppose S = Spec F' for a field
F, and let p be a prime distinct from char(F'). A p-divisible group I' = {I',,} over F' has
each I',, necessarily finite étale over F', by Lemma 7.1.9, so the axioms for a p-divisible group
can be formulated entirely in the language of the Galois modules M,, = I',,(F}): each M, is
a discrete Gp-module of size p™ that is killed by p" and M,,1[p"] = M,,. In particular, each
M, has p-torsion M, of size p", so necessarily M, is finite free of rank h over Z/(p") for all
n.

We can form two kinds of limits: (i) the direct limit My = lim M, is (Qp/Z,)" with a
continuous G g-action for the discrete topology, and (ii) multiplication by p on M, provides
a quotient map M, 1, — M, of discrete G p-modules yielding an inverse limit 7,,(I") = @ M,
that is a finite free Z,-module of rank h equipped with a continuous action of Gy for the
p-adic topology.

We can recover the directed system of M, ’s from both limits, namely M, = M[p"]| and
M, = T,(I')/(p™). The viewpoint of M., explains the “p-divisible” aspect of the situation
(since multiplication by p is surjective on (Q,/Z,)"), whereas T,(I") has a nicer Z,-module
structure. This proves:

Proposition 7.2.2. If F' is a field with p # char(F), then the functor I' ~» T,(I') is an
equivalence from the category of p-divisible groups over Spec F' to the category of p-adic

representations of Gg on finite free Z,-modules, with T,(I") having Z,-rank equal to the
height of T'.

For example, if I' = A[p>] is the p-divisible group associated to an abelian variety A over
F then T,(I") is the p-adic Tate module representation 7,,(A) of Gp. Doing the same with
A replaced by GL; yields I' = {yu,»} with the evident transition maps, for which we have
T,(I') = Z,(1). When working over a base S on which p is not a unit, such as S = Spec O,
such Galois-theoretic considerations do not apply.

Although Tate modules are not available when studying p-divisible groups over base
schemes on which p is not a unit, over some special base schemes there is a very good
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replacement. The two simplest cases for which a variant is available is S = Spec k for a per-
fect field k of characteristic p > 0 and S = Spec W(k) for such a k. (The case S = Spec Ok
is rather more subtle when e(K) > 1, and we postpone it to §12 where we use integral
p-adic Hodge theory.) The theory over Speck is due to Dieudonné, as part of his theory of
Dieudonné modules, and the theory over Spec W(k) is due to Fontaine (building on earlier
work of Barsotti and Honda). We now turn to a discussion of each of these cases in turn.
The case S = Spec W(k) is of more arithmetic interest, but to understand it we first need
to review Dieudonné’s method for working with the special fiber over k.

Definition 7.2.3. Let k be a perfect field of characteristic p > 0, and let o : W(k) ~ W(k)
be the Frobenius automorphism lifting the p-power map on k. The Dieudonné ring of k is the
associative ring % = W(k)[.#, 7] subject to the relations F¥ = V% = p, Fc = o(c)F
for c € W(k), and ¢ = ¥ o(c) for c € W(k). (This is non-commutative when k # F,, and
is Zy[z,y]/(xy — p) when k =F,.)

Observe that a left Z,-module is the same thing as a W(k)-module D equipped with a
o-semilinear endomorphism .# : D — D and a o~ !-semilinear endomorphism ¥ : D — D
such that F¥ = ¥.# = [p|p. An excellent reference for the basic theory of Dieudonné
modules and their relations with group schemes over k is [18, Ch. I-III], and some of the
main results as summarized as follows.

Theorem 7.2.4. There is an additive anti-equivalence of categories G ~~ D(G) from the
category of finite flat k-group schemes of p-power order to the category of left D-modules of
finite W -length. The following additional properties hold.

(1) The order of G is p™Ww (DA,

(2) If K'/k is an extension of perfect fields then naturally W (k') @w ) D(G) ~ D(Gy) as
left Dy-modules. In particular, taking k — k' to be the Frobenius map o : k ~ k, we
naturally have o*(D(G)) ~ D(G®) as W(k)-modules, where G?) is the base change
of G along Speco.

(3) Let Fou : G — G®) be the relative Frobenius morphism as in Definition 7.1.4. The
o-semilinear map D(G) — D(G) corresponding to the W (k)-linear map

o(D(G)) ~ DG " D(@)
is the action of F. Moreover, G is connected if and only if F is nilpotent on D(G).
(4) The k-vector space D(G)/FD(G) is canonically identified with the linear dual tf, of

the tangent space tg of G at the origin. In particular, G is étale if and only if F is
bijective on D(G).

Ezxample 7.2.5. Let k be a perfect field of characteristic p > 0. Finite flat p-torsion k-
groups correspond to 1-dimensional k-vector spaces equipped with a compatible left -
module structure. That is, there is given a pair of operators .# and ¥ with appropriate
semilinearity properties such that .# o # and ¥ o.% both vanish. In the 1-dimensional case
we have D(p,) = k with % =0 and ¥ =o', D(Z/pZ) = k with ¥ = 0 and . = o, and
D(w,) = k with # =¥ = 0. When k is algebraically closed there are no other 1-dimensional
examples, but otherwise the cases in which .# # 0 or ¥ # 0 admit other possibilities.
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In the 2-dimensional case, an especially interesting example is M = k? with

01 01
ag _ -1
,f_ao<0 0), V=0 O(O 0).

The corresponding k-group is the p-torsion of a supersingular elliptic curve over k.

The usefulness of Theorem 7.2.4 is perhaps most strikingly illustrated by applying it to
describe p-divisible groups over k in a manner very much like a Tate module, except that
the Galois action is replaced with a Z-module structure and the “coefficients” are W (k)
rather than Z,:

Proposition 7.2.6. The functor G ~ D(G) := lim D(G,,) is an anti-equivalence of cate-
gories between the category of p-divisible groups over k and the category of finite free W (k)-
modules D equipped with a Frobenius semilinear endomorphism % : D — D such that
pD C # (D). The height of G is the W(k)-rank of D(G), and this equivalence is compatible
with any extension k' [k of perfect fields.

The torsion-levels G,, of the p-divisible group G satisfy D(G,) ~ D(G)/(p") compatibly
with change in n, so the G, ’s are connected if and only if F is topologically nilpotent on
D(G) with its p-adic topology.

The point of the condition pD C % (D) in this proposition is to ensure that the ¥ operator
can also be defined on D, as is required to specify a left Z-module structure.

Proof. Choose a p-divisible group G = {G,} over k with height A > 0. Since G; is the
categorical kernel of p on GG, and D is an additive categorical anti-equivalence, it follows that
D(G,) is naturally identified with D(G,,)/(p) for all n. Thus, each D(G,,) is a W(k)/(p")-
module of length p™* such that D(G,)/(p) ~ D(G,) has k-dimension h.

It follows by the same argument used to work out the structure of torsion in abelian
varieties that each D(G,,) is a finite free W(k)/(p")-module of rank h and G, — G,
induces an isomorphism D(G,,11)/(p") ~ D(G,,) for all n > 1. Hence,

D(G) = lim D(G,,)

is Z-module that is finite free over W(k) with rank h, and D(G)/(p") ~ D(G,) as Z-
modules compatibly with change in n. |

To give another illustration of the usefulness of Dieudonné modules, recall that if A and
B are abelian varieties over a field k with char(k) # ¢ then

(721) Zg Xz HOIIlk(A, B) — HOmZZ[Gk}(Tg(A), TE(B))

is injective. We can rewrite the target as the space of maps Homy (A[¢>°], B[¢*°]) of {-divisible
groups over k, suggesting that for p = char(k) > 0 the map

Z,, @z Homy,(A, B) — Homy(A[p>], B[p™])

should be injective. Though k£ may not be perfect, to check such injectivity it suffices to do
so over a perfect extension of k, in which case we can use Dieudonné theory to reformulate
the assertion as:
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Proposition 7.2.7. Let A and B be abelian varieties over a perfect field k with char(k) =
p > 0. The natural map

(7.2.2) Z, ®z Homy (A, B) — Homg, (D(B[p™]), D(A[p™)]))

18 injective.

This proposition is proved by ezactly the same argument as in the ¢-adic case for ¢ # p (as
in [36, §19, Thm, 3]). Although (7.2.2) looks very similar to the analogue for Tate modules
(up to the intervention of contravariance that swaps A and B in the target), there are two
important distinctions to keep in mind: (i) when k is algebraically closed the Z-module
structure cannot be ignored (whereas the Galois action becomes trivial in the (-adic case),
and (ii) although the Dieudonné modules are finite free W(k)-modules, if & # F,, then the
target of (7.2.2) is not a W(k)-module when it is nonzero because W (k) is not central in
(and so it does not act through Z-linear endomorphisms on a general Z,-module).

It is an important result of Tate that (7.2.1) and (7.2.2) are isomorphisms when k is
finite. This is essential in Tate’s analysis ([48], [50]) of the precise structure (especially at
p-adic places) of the endomorphism algebras of simple abelian varieties over finite fields.
Tate went much further with p-divisible groups than applications over finite fields. In mixed
characteristic, he showed that although p-divisible groups over Ok are not abelian schemes,
they sometimes behave as if they were. More specifically, Tate proved (as the main result in
[49]) that p-divisible groups over O are functorial in their generic fiber, exactly like abelian
schemes:

Theorem 7.2.8 (Tate). If I' and T” are p-divisible groups over O then Hom(I', ") —
Homy (T'g, T'y) is bijective.

This theorem (and its technique of proof) marks the true beginning of p-adic Hodge theory,
as it was Tate’s proof of this result that led him to discover the Hodge-Tate decomposition
for H (A%, Qp) = V,(A)Y for abelian varieties A over K with good reduction, and to then
ask whether a similar such decomposition might hold in complete generality (for the p-adic
étale cohomology of all smooth proper K-schemes).

We conclude our discussion of Dieudonné modules by describing Fontaine’s classification
of finite flat group schemes (of p-power order) and p-divisible groups G over W(k) in terms
of the Dieudonné module D(Gy,) of the special fiber and some “lifting data”.

Recall that D(Gy)/.#D(G) is the cotangent space of Gy at the origin (Theorem 7.2.4).
In [18, Ch. IV], Fontaine proved via a general study of formal groups that if Gy is a p-
divisible group over k then when p > 2 any lift G of G to W(k) provides a W(k)-submodule
L C D(Gyg) of “logarithms” such that L/pL — D(Gy)/-#D(Gy) is an isomorphism. For
p = 2 he obtained the same result provided that Gy, (or rather, each G[p"]) is connected.
In [17] Fontaine proved an analogous theorem when Gy is a finite flat group scheme of
p-power order (assumed to be connected when p = 2), with the additional property that
V| : L — D(Gg) is injective (as is automatic when working with finite free W(k)-modules,
since .# o ¥ = p). This motivates the following definition.

Definition 7.2.9. Let k£ be a perfect field of characteristic p > 0. A Honda system over
W (k) is a pair (M, L) consisting of a finite free W(k)-module M, a W(k)-submodule L, and
a Frobenius-semilinear endomorphism % : M — M such that
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o pM C F (M),
e the induced map L/pL — M/.% (M) is an isomorphism.
If % is topologically nilpotent on M then (M, L) is called connected.
A finite Honda system over W(k) is a pair (M, L) consisting of a left Z,-module M of
finite W(k)-length and a W (k)-submodule L such that

e the restriction ¥'|; : L — M is injective
e the induced map L/pL — M /% (M) is an isomorphism.

If .% is nilpotent on M then (M, L) is called connected.

Morphisms of Honda systems and finite Honda systems are defined in the evident manner,
and there is an evident notion of base change (corresponding to extensions k — k' of perfect
fields). Note that the condition pM C .# (M) in the definition of a Honda system is just a
way of encoding that M is really a left Zx-module (in which case the map #'|, : L — M is
automatically injective since .#¥ = p and M is torsion-free over W(k)). It is true but not
obvious that if (M, L) is a Honda system over W (k) then (M /p"M, L/p™L) is a finite Honda
system over W (k). This expresses a basic compatibility property in the following result of
Fontaine:

Theorem 7.2.10 (Fontaine). Let k be a perfect field of characteristic p > 0. If p > 2 then
there is a natural anti-equivalence of categories G ~» (D(Gy), L(G)) from the category of
p-divisible groups over W (k) to the category of Honda systems, and the same holds for p = 2
if we restrict attention to connected objects on both sides.

Likewise, there is a natural anti-equivalence of categories from the category of finite flat
W(k)-group schemes of p-power order to the category of finite Honda systems when p > 2,
and similarly for connected objects when p = 2.

Both anti-equivalences respect extension of the perfect residue field, and if G is a p-divisible
group over W(k) then (D(Gy)/(p"), L(G)/(p"™)) is naturally identified with the finite Honda
system associated to G[p™] for all n > 1.

Proof. The case of p-divisible groups is treated in [18, Ch. IV] using the theory of formal
groups. The case of finite group schemes was announced by Fontaine in [17], unfortunately
without proofs; in [15, §1] proofs are provided. [ |

Recall that K, denotes W(k)[1/p] (as in the discussion preceding Remark 4.2.4). In the
spirit of p-adic Hodge theory it is natural to ask for a description of the Galois module
G(Ky) associated to a finite flat group scheme G over W(k) in terms of its associated finite
Honda system, and similarly for the p-adic representation of Gk, associated to the p-adic
Tate module of the generic fiber of a p-divisible group over W(k). Such descriptions can be
given, but we will not need them and so we refer the interested reader to [15, Thm. 1.9] for
further details.

7.3. Motivation from crystalline and de Rham cohomologies. In Proposition 7.2.6,
we saw that there is some interest in studying the following kind of semilinear algebra
object: a finite free W(k)-module D equipped with a Frobenius semi-linear endomorphism
¢ : D — D such that pD C ¢(D). For any such D, ¢ is bijective on D[1/p]. Hence, D[1/p]
is an instance of the following kind of structure:
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Definition 7.3.1. An isocrystal over K is a finite-dimensional Ky-vector space D equipped
with a bijective Frobenius-semilinear endomorphism ¢p : D — D. (The “iso” refers to
isogeny, and is related to working over K, rather than W(k) and assuming that ¢p is
bijective on D.)

The abelian category of isocrystals over K is denoted Modi}o, with evident notions of ten-
sor product and dual (the latter resting on the Frobenius structure (¢pv.0)(d) := o (¢(¢ 5 (d)))
for ¢ € DY and d € D, with o denoting the Frobenius automorphism of Ky = W(k)[1/p]).

Just as the isogeny category of abelian varieties over a field is much simpler than the
category of abelian varieties (e.g., Poincaré complete reducibility holds up to isogeny, and
endomorphism algebras are semisimple over Q), working with an “isogeny category” of p-
divisible groups over a field is sometimes a big simplification. Put another way, just as V;(A)
can be more convenient than 7;(A), we will likewise find that working with the isocrystal
D(A[p>])[1/p] can be simpler than working with the Dieudonné module D(A[p*>]). Of
course, sometimes it is necessary to keep track of the integral structure (e.g., for deformation
theory of abelian varieties and Galois representations).

The following example shows that one can really “write down” isocrystals over Ky. The
isocrystals given below lead to a classification of all isocrystals when k = k (Theorem 8.1.4).
Nothing like this is true if we work over W(k) rather than over Ky = W(k)[1/p], so it

demonstrates one of the virtues of working in the “isogeny category” Mod(f(o.

Example 7.3.2. Let Ko[¢] = Z,[1/p] (with ¢ = .# from Definition 7.2.3) be the twisted
polynomial ring satisfying ¢c = o(c)¢ for ¢ € K. (See Exercise 7.4.7.) An interesting class
of isocrystals over K| is given by the quotients

Dys = Kol¢]/(Kol¢](¢" — p°))

modulo the left ideals Ky[¢](¢" — p°) in Ky[¢] for any integers r and s with » > 0 (but
possibly s < 0). The Frobenius structure on D, ; defined by left multiplication by ¢.

By a “division algorithm™ argument we see that D, ; has finite dimension r over Ky, and
it is an isocrystal over K. Although it does not make sense to speak of eigenvalues for the
¢-operator on D, s when k # F,, (since this operator is just semilinear rather than linear), it
is good to imagine that ¢ should have “eigenvalues” on D,  that are integral unit multiples
of p*/.

General isocrystals over K will play an essential role in the theory of crystalline repre-
sentations, and the ones arising from Dieudonné modules of p-divisible groups over k as in
Proposition 7.2.6 are extremely special: in general an isocrystal need not contain a ¢-stable
W (k)-lattice, and even when such a lattice M exists it is a very stringent condition that
pM C ¢(M). Moreover, when e(K) > 1 the appropriate integral counterpart to isocrystals
is far more subtle than the W(k)-module structures arising from p-divisible groups over k.

At this point we have seen two ways in which Frobenius structures naturally arise in the
study of p-adic Galois representations: in §3 via étale p-modules (which encode informa-
tion about Gg-representations restricted to a certain closed subgroup Gk _ ), and in §7.2
via isocrystals over Ky and integral counterparts related to p-divisible groups over k and
especially over W(k) (such as arise from abelian varieties over K, with good reduction).
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To figure out how to introduce Frobenius structures into the study of objects in Filg
in general, we first consider an abelian variety A over K, with good reduction, say with
</ the corresponding abelian scheme over W(k). Let I' = &7[p*] be the corresponding p-
divisible group over W(k). By Theorem 7.2.8, I' is determined up to isomorphism by the
corresponding generic fiber I'k,, or equivalently the associated Z,|[G k,]-module T,,(A). Since
torsion in abelian varieties over an algebraically closed field classifies finite étale covering
spaces [36, §18], this Tate module is the Z,-linear dual of H} (A%, ,Z,). But Theorem 7.2.10
shows (assuming connectedness when p = 2) that I" is determined up to isomorphism by an
entirely different kind of structure: the Dieudonné module D(I'y) equipped with the filtration
provided by the W(k)-submodule L C D(I'y) satisfying L/pL ~ D(I'y)/#D(').

Upon inverting p, we now have two kinds of structure that each determine I' up to
isogeny: the p-adic Galois representation H}:t(AFo? Q,) and the isocrystal D(I'y)[1/p] over
Ky equipped with a 1-step filtration Fil' = L[1/p] C D(I';)[1/p]. It is therefore natural
to speculate whether there is a way to bypass I' entirely and define a “mysterious functor”
going directly between p-adic G'x,-representations and isocrystals D over K, endowed with
a structure from Filg,. This suggests that to generalize Filg, we should bring the category
Mod(f(O of isocrystals over K into the picture.

Now allowing ramification, there is a broader context in which one sees isocrystals over K
and filtered vector spaces over K interacting with each other (even when e(K) > 1, in which
case Frobenius operators make no sense on K-vector spaces). Let X be a smooth proper K-
scheme, and assume X = 2% for a smooth proper O-scheme 2" (i.e., “good reduction”).
Let Zy = & ®g, k denote the smooth proper special fiber over the perfect field k. The
theory of crystalline cohomology over k provides a finitely generated (possibly not free)
W (k)-module H . .(25/ W(k)) equipped with a Frobenius semilinear endomorphism ¢ such

that the induced endomorphism of the Ky-vector space H. . .( 20/ W(k))[1/p] is bijective (due
to a calculation with Poincaré duality). This is an isocrystal over K.
The comparison isomorphism between crystalline and de Rham cohomology [6, Cor. 2.5]

is a canonical K-linear isomorphism

(7.3.1) ar(X/K) ~ K @, Heyio( 20/ W(E))[1/p].

(In general the integral structures on both sides provided by the image of H’ ..(2o/ W(k))
and the image of Hi (2" /Ok) are not compatible in either direction [6, Rem. 2.10]! So it is
important that we have inverted p.) Thus, D = H’, (2o/ W(k))[1/p] is an isocrystal over
Ky for which the scalar extension Dy := K ®, D is endowed with a structure of object in
Filg via the Hodge filtration on the right side of (7.3.1).

Remark 7.3.3. In case 2" = &/ is an abelian scheme over W(k), it is natural to ask how
to compare the two preceding constructions (one using Dieudonné theory, the other using
crystalline cohomology), assuming when p = 2 that < has connected p-power torsion.
By work of Berthelot-Breen-Messing [4, 2.2.9, 2.5.7, 2.5.8(ii), 3.3.7, 4.2.14, 4.2.15(ii)], for
A = 47, there are canonical W (k)-linear isomorphisms

D(A[p™)? = Hy (A) W(k)) = Hig (7 / W(k))

cris
in which the first one is compatible with Frobenius operators, the second coincides (by
construction) with (7.3.1) upon inverting p, and the composite map converts the Hodge
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filtration H° (7, Q}, Jw(k)) on the right side over to the Frobenius twist of Fontaine’s module
of “logarithms” L C D(A[p>]) on the left side.

The preceding considerations lead us to the following concept that is a refinement of Filg.

Definition 7.3.4. Let K be a p-adic field. A filtered ¢-module over K is a triple (D, ¢, Fil®)
where (D, ¢p) is an isocrystal over Ky and (Dg, Fil*) is an object in Filg (i.e., {Fil'} is a
decreasing exhaustive and separated filtration on D).

A morphism D' — D between two filtered ¢-modules is a Ky-linear map D’ — D that is
compatible with both ¢p : D" — D" and ¢p : D — D and has K-linear extension Dy — Dy
that is a morphism in Filgx. The category of triples (D, ¢, Fil*) is denoted MF?{.

It must be emphasized that a filtered ¢-module over K is really a vector space D over Ky
equipped with some auxiliary structure (one part of which is a filtration on D), and there is
no required relationship between the filtration structure on Dg and the Frobenius structure
on D over Ky. When K # K it makes no sense to speak of a Frobenius structure on Dp,
so it is not obvious how we can possibly link up the filtration and the Frobenius structure.
When K = K, it would be “wrong” to ask that ¢ respect the filtration. (For example, with
an elliptic curve £ over F,, the Frobenius action on the isocrystal has eigenvalues which may
not lie in Q,, due to Exercise 7.4.8.) Later we will define a finer class of objects in MF?{ for
which there is a deep connection between these two structures.

The category MF?( of filtered ¢-modules over K admits many of the basic “linear algebra”
concepts that we have defined earlier for the category of étale p-modules in §3 and for the
category Filg in §6.2:

e we form the Ky-linear kernel and cokernel endowed with their induced Frobenius
semilinear maps (that are bijective for the same reasons given in §3), and their scalar
extensions to K are endowed with subspace and quotient filtrations respectively;

e we define the notions of image and coimage, akin to the case of Filx in §6.2, so MFf{
is not abelian (for the same reasons as for filtered vector spaces in Example 6.2.1)
but we have the notion of a strict morphism as in Definition 6.2.5;

e there is an evident notion of short exact sequence, as in Filg;

e we define tensor product and dual by merging such notions as introduced for étale ¢-
modules in §3 and for filtered vector spaces in Definition 6.2.2 (since tensor products
and duals commute with scalar extension from Kj to K).

For example, the dual DV of a filtered ¢-module D is the usual Kj-linear dual endowed
with the dual Frobenius (i.e., ¢pv : £ + o0 f o ¢, where o is the Frobenius self-map of
Ky = W(k)[1/p], or proceed alternatively as in Exercise 3.4.2), and the scalar extension
(DY)k ~ (Dg)" is given the dual filtration to the filtration on Dy (as in Definition 6.2.2).
Natural linear isomorphisms such as DY @, D' ~ (D ®g, D')" are isomorphisms in MF¢,
when using dual and tensor product filtration and Frobenius structures in MF?( (exactly as
for Filg via Exercise 6.2.3).

Since the Frobenius self-map o of Kj is bijective (whereas ¢s in §3 was not bijective in
the most interesting cases, due to the residue field E being imperfect in such cases), for some
constructions in MFf{ we may suppress the intervention of scalar extension by the Frobenius
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map of K. As an illustration of this, Exercise 6.4.1 can be extended to incorporate Frobenius
structures; see Exercise 7.4.11.

7.4. Exercises.

Ezercise 7.4.1. Write out the “additive” group scheme structure G, on Spec Z[z] and the
“multiplicative” group scheme structure G,,, on Spec Z[z, 1/x] in terms of maps of rings. Do
the same for GL,, = Spec(Z[z;;|[1/ det]). How about PGL,, and SL,?

Describe all finite subgroup schemes of G, over an algebraically closed field of any char-
acteristic. How about G,,,?

Exercise 7.4.2. Using functorial considerations, show that if G — S is a commutative group
scheme killed by nm for relative prime integers n,m > 1 then the natural map G[n| xg
G[m| — G is an isomorphism.

If G is finite flat over S prove the same for G[n] and G[m]. Thus, finite flat groups admit
“primary decomposition” just like finite abelian groups.

Exercise 7.4.3. Let S be a scheme, and F a field.

(1) Check the equivalences in Definition 7.1.1, via Yoneda’s Lemma. In particular, deduce
that if G and H are S-group schemes and f : G — H is an S-scheme map compatible
with multiplication laws then f is an S-group homomorphism.

(2) Prove that there are no nontrivial group scheme homomorphisms from G,, to G,
over any ring R, and prove the same in the opposite direction over any reduced ring.
But if there exists a non-zero ¢ € R such that €2 = 0 then construct a nontrivial
R-group homomorphism from G, to Gy,. If moreover R is an Fp-algebra, show that
T +— = + exP is an R-group automorphism of G, not arising from an R*-scaling!

(3) Prove that det(z;;) € F[z;j] is irreducible, and by using the structure of units in the
ring Flzy,...,xy][1/f] for an irreducible polynomial f show that the only F-group
scheme maps GL,, — GL; are det” for n € Z. Show the same over SpecZ by using
the result over Spec Q.

(4) Let G be a smooth F-group with dim G > 0. Explain why the underlying topological
space of the scheme GG cannot be given a group structure compatibly with the group
law on G(F') such that translations are continuous.

Exercise 7.4.4. Let R be a Dedekind domain, and X a flat R-scheme of finite type.

(1) Show that scheme-theoretic closure sets up a bijective correspondence between closed
subschemes of the generic fiber and closed subschemes of X that are R-flat. Prove
that this is compatible with the formation of products over Spec R, and so deduce a
similar correspondence for R-flat group schemes of finite type.

(2) Suppose R has fraction field F' with characteristic 0, and let & be a finite flat R-
group (so ¥ is étale, and hence can be interpreted as a finite Gal(F;/F')-module).
Construct a bijective correspondence between Galois submodules of ¢ (F) and R-flat
closed subschemes of G.

Exercise 7.4.5. Let k be an arbitrary field with characteristic p > 0. Using the addition law
on length-n Witt vectors (with values in any k-algebra), explain how this gives affine n-space
over k a structure of smooth group variety W,, (compatible with extension of the base field,
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so the case k = F), is the most important). Describe it explicitly for n = 2 and any k. Can
you define a concept of “commutative ring scheme” and exhibit W,, as such an example?

One interesting feature of Witt groups is that they give rise to nontrivial extension struc-
tures. For example, construct a complex of k-groups

0-G, =W, 5G,—0

that is an “exact sequence” in the sense that the first map is the scheme-theoretic kernel of
7, and 7 is faithfully flat (which forces it to have the universal mapping property one would
want for a good notion of quotient, though do not try to prove it if you have not studied
descent theory). Also prove that over this sequence is non-split: there is no k-group section
to 7 (but there are lots of k-scheme sections!). It can be proved that in the category of
smooth commutative k-groups, this is the universal “extension” of G, by G, over k. (In
contrast, in characteristic 0 all such extensions are split.)

Fzercise 7.4.6. Let X — S be a map of F)-schemes. Verify the compatibilities asserted for
Fx/s in Lemma 7.1.5, and check that if G = GL, over F, then Fg/p, is the p-power map
on matrix entries. Do likewise for X = Py in terms of standard homogenous coordinates.
Also check that if G = E' is an elliptic curve over a field k of characteristic p > 0 then Fg/
as in Definition 7.1.4 really is the Frobenius isogeny from the theory of elliptic curves.

Finally, show that if X is smooth over £ with pure dimension d > 0 then Fx/; is a finite
flat map with degree p?. If A is an abelian variety of dimension g > 0 over k then deduce
that Fly/ is a purely inseparable isogeny of degree p9.

Exercise 7.4.7. Let k be a perfect field of characteristic p > 0. Prove that elements of the
Dieudonné ring & admit unique expansions

o+ Y GF +> VI
>0 >0

as finite sums with ¢;, ¢; € W(k). Deduce that 2 has center W(F,) = Z, if k is infinite
and center Z,[F/, V'] ~ Z,|z,y]/(zy — p’) if k has finite size ¢ = p/. For any extension
of perfect fields k'/k define a natural ring map W(k') @wu) Zr — %k, and prove it is an
isomorphism.

Prove that Z[1/p] has a much simpler structure than Zj: if we let Ky = W(k)[1/p] then
Px[1/p] is the twisted polynomial ring Ky[.#] in a variable .# satisfying the commutation
relation % ¢ = o(c).# for all ¢ € Ky (where ¢ denotes the Frobenius automorphism of Kj).

Exercise 7.4.8. Check the proof of Proposition 7.2.7 really works. Also check that if A is an
abelian variety over a finite field k and f € Endy(A) is an endomorphism of A # 0 then the
common characteristic polynomial Py € Z[T] of all T;(f) € Endg,(T;(A)) with ¢ # char(k)
is also the characteristic polynomial of D(f) € Endwa) (D(A[p>])). (Hint: the proof for
Tate modules [36, Thm. 4, p. 180] carries over verbatim!)

Exercise 7.4.9. As an application of Dieudonné modules, show that if G is a p-divisible group
over a field k of characteristic p > 0 and if v € Aut,(G) is a finite-order automorphism that
is trivial on G[p] then v = 1 provided p > 2. Give a counterexample if p = 2.
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FEzercise 7.4.10. Note that the Frobenius map on Ky = W(k)[1/p] is an automorphism (in
contrast with the considerations with & in §3, whose residue field was imperfect!). Using
this, prove that any Frobenius semilinear injection D — D for a finite-dimensional Kq-vector
space D is automatically bijective. Hence, in the definition of an isocrystal over K|, it suffices
to assume that ¢p : D — D is injective rather than bijective. (This is very useful in some
constructions of isocrystals, such as in constructions involving Be;s.)

Ezercise 7.4.11. Let K be a p-adic field. For D, D’ € MF., give Homg, (D, D') a structure
of object in MFY, (denoted Hom(D, D')) by using the Hom-filtration from Exercise 6.4.1 on
Homy, (D, D') g = Homg (Dg, D) and using the Frobenius structure ¢ : Homg, (D, D') —
Homy, (D, D') defined by ¢(L) = ¢pro Logp'. (This is Ky-linear because the two Frobenius
semilinearities from ¢p and ¢p cancel out.) Using this definition of the MF?(—structure on
Homy, (D, D), prove that the usual linear isomorphism D'®g, DY ~ Homg, (D, D') is really
an isomorphism D' ® DY ~ Hom(D, D') in MF?..

8. FILTERED (¢, N)-MODULES

We now wish to take up a systematic study of some basic properties of filtered ¢-modules,
and even a more general kind of structure (filtered (¢, N)-modules) that is designed to deal
with the p-adic representation analogue of “bad reduction”. Before we dive in, it may help
to orient ourselves as to how filtered ¢-modules are going to ultimately fit into Fontaine’s
period ring formalism.

The category MF% of filtered ¢-modules will naturally arise as the target category of
the functor Dp_, associated to a certain (Q,, Gk )-regular Ky-subalgebra Bes C Bagr to be

introduced in §9. This subalgebra contains ¢ and W(R)[1/p] (hence it contains W(k)[1/p] =

I/(?l), it admits a canonical Frobenius-semilinear and K,|G k|-algebra endomorphism @
Beris — Beis, and the following two crucial properties hold:

® Vuis O By is injective (though not surjective),
e the natural map K ®Qg, Beis — Bar 1s injective.

In particular, K ®p, Buis is endowed with a G -stable exhaustive and separated K-linear
subspace filtration from Bgg:

Fil'( K ®5, Beris) = (K ®x Beris) N Fil'(Bar).

Note that K @, BSX C BSE = K, so for Ko-dimension reasons the inclusion Ko C B is
an equality.

It will be shown in Theorem 9.1.6 that B is a (Q,, Gk)-regular ring in the sense of
Definition 5.1.1. Thus, by the general formalism of §5, we will get a faithful functor D :
Repq, (Gk) — Vec, defined by

Dcris(v) = (Bcris ®Qp V)GK~

This finite-dimensional Ky-vector space has two kinds of structure: (i) an injective Frobenius-
semilinear endomorphism induced by the Gg-equivariant injective Frobenius (s on Beis
(so this is bijective by Exercise 7.4.10!); (ii) an exhaustive and separated K-linear filtration
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on the scalar extension
Dcris(V)K = ((K ®K0 BCTiS) ®Qp V)GK

via the G g-stable filtration on K ® g, Beis- (Equivalently, there is a natural injective K-linear
map Deis(V) g < Dqr(V') making the filtration on D,(V')k into the subspace filtration.)
Thus, Duis(V) g has a structure of object in Filg, so D5 is a functor

D yis Repr(GK) — MF?{

cris

Since Beys is (Qp, G )-regular, this is a faithful functor on the full subcategory Repg, (Gk)
of Bgis-admissible representations (to be called crystalline representations) since the forget-
ful functor MF (f< — Vecg, is faithful. Somewhat deeper is the fact that D : Repgf(G K) —

MF?( is fully faithful, as we shall prove later. (In Proposition 9.1.9 it will be proved that crys-
talline representations V' are always de Rham and that Dyg(V') € Filg can be reconstructed
from Deis(V'), so the crystalline condition really does refine the de Rham condition.)

8.1. Newton and Hodge polygons. A general filtered ¢-module is not so useful, since
there is no relationship between its Frobenius and filtration structures. The filtered ¢-
modules that arise from algebraic geometry (as well as the ones which will arise from crys-
talline representations) satisfy some additional properties that relate their Frobenius and
filtration structures in a nontrivial manner. This motivates the introduction of a certain
full subcategory of MF?} (the weakly admissible filtered ¢-modules) consisting of objects
satisfying such additional properties, and remarkably this subcategory will be abelian.

To define this special class of objects in MF (f{, we need to introduce two important invari-
ants of a filtered ¢-module, its Hodge polygon and its Newton polygon. The Hodge polygon
is really associated to the underlying object in Filx and the Newton polygon is associated
to the underlying isocrystal over Kj.

Definition 8.1.1. Let F be a field and let (D,{D'}) be a nonzero object in Filp. Let
{ig < -+ < i,} be the distinct ¢’s such that gr'(D) # 0. The Hodge polygon Py = Pg(D)
is the convex polygon in the plane that has leftmost endpoint (0,0) and has dimp gr (D)
consecutive segments with horizontal distance 1 and slope 7; for 0 < j < r. (If D = 0 then
define Py (D) to be the single point (0,0).) See Figure 1.

The y-coordinate of the rightmost endpoint of Py (D) is the Hodge number
ty(D) = Zz -dimp gr'(D).

i€Z
The horizontal length of Py (D) is dim D, so the rightmost endpoint is (dim D, ty(D)). For
example, if D® = D and D®*! = 0 for some iy (i.e., if the filtration is supported in a
single degree, at least for D # 0) then Py (D) is the segment joining (0,0) and (d,iod) for
d = dimg D. This covers all cases with dim D < 1. For any nonzero D with dimension
d > 0, the top exterior power det D has the natural quotient filtration from D®? and as
such we see (by considering a basis adapted to the filtration) that ¢y (D) = ty(det D).
The natural linear isomorphisms

det(DV) ~ (det D), det(D)? ® det(D')? ~ det(D @ D')
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FIGURE 1. A typical Hodge polygon

are isomorphisms in Filp for D, D’ € Filp with respective dimensions d and d’, and likewise
if

0—-D —D—D"—0
is a short exact sequence in Filg then the natural linear isomorphism det(D’) ® det(D”) ~
det(D) is an isomorphism in Filp. Thus, the general equality ty(D) = ty(det D) and
direct calculations in the 1-dimensional case yield the following useful result concerning the
relationship between ty and tensorial notions in Filg.

Proposition 8.1.2. For D € Filg we have ty(DY) = —tg(D), and for D, D" € Filp we
have
ty(D ® D") = (dim D)ty (D') + (dim D)ty (D).
(In particular, ty(D®") = r(dim D)"Yty (D) for r > 1.) Moreover, ty is additive on short
exact sequences in Filg in the sense that if 0 — D' — D — D" — 0 is a short exact sequence
in Filp then
tg(D) =ty (D) + tg(D").

To define Newton polygons we switch our attention to the category Mod?(0 of isocrystals
over K rather than the category Filx. Recall that in p-adic analysis, one attaches a convex
Newton polygon to a polynomial or power series [[(1 — ¢;7) with constant term 1, and the
slopes of this polygon are numbers ord,(t;) as t; varies through the reciprocal zeros. An
interesting example of this occurs in the study of abelian varieties over finite fields: if A is
an abelian variety of dimension g > 0 over a finite field k of size ¢ = p", then although the
Frobenius operator ¢ on D = D(A[p™])[1/p] is not Ky-linear (if r # 1), the iterate ¢" is
Ky-linear. Moreover, by Theorem 7.2.4(3) this linear operator is induced by the g-Frobenius
endomorphism of A. Thus, by Exercise 7.4.8 the characteristic polynomial of ¢" is exactly
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the usual one over Z from the f-adic Tate modules, so its zeros Aq,. .., Agy encode the zeta
function of A over k. (For example, the ord,()\;)’s encode information about whether A is
ordinary, supersingular, or somewhere in between.)

The ratios ord,(\;)/r = ord,(\;)/ ord,(q) are insensitive to replacing k with a finite exten-
sion, and so it is such “normalized” p-adic ordinals that are of interest (and have a chance
to be generalized to the case of infinite k, such as F,).

Rather generally, for any isocrystal D over Ky = W(k)[1/p] with a finite k of size ¢ = p”
we can make sense of eigenvalues for the Ky-linear map ¢7,, so we can define the set of slopes
of D (with multiplicity) to be the set of ratios ord,()\)/ ord,(¢q) where A ranges through the
set of eigenvalues of ¢, (in an algebraic closure of Kj). This set of ratios is invariant under
finite extension on k, but if k is not finite then this linearization trick is not available. Thus,
in general we have to proceed in another way.

Let us first explain a possible approach that turns out not to work (but whose failure is
instructive). Fix a basis {e;} of D and consider the resulting “matrix” for ¢p, by which
we mean the (visibly invertible) matrix (a;;) over K, with ¢p(e;) = > a;;e;. This ma-
trix transforms in a semilinear-conjugation manner under a change of basis, so its set of
eigenvalues {\;} is not basis-independent in general, but it is natural to wonder if the set
of p-adic ordinals ord,(A;) (with multiplicity) is independent of the choice of basis. In the
1-dimensional case this holds since o(c)/c € W(k)* for any ¢ € K, but unfortunately it
fails in the 2-dimensional case, as the following example shows.

Example 8.1.3 (Katz). Let Ko = W(F,2)[1/p] with p = 3 mod 4, and let i = v/—1 € K. Let
D = Kyey ® Koes and define ¢p : D — D by the matrix

< p—1 (p+1) )

(p+1)i —(p—-1))°

That is, we define ¢p(e;) = (p — 1)er + (p + 1)ies and ¢p(e2) = (p + 1)ie; — (p — 1)es
and we then extend ¢p uniquely by Frobenius-semilinearity. This matrix has characteristic
polynomial X2 — 4p, so its roots are +2,/p. These have p-adic ordinal 1/2. However, if we
pass to the basis €] = e; +ies and €}, = ie; + ey then since the Frobenius of K carries i to
—i (as p = 3 mod 4) we compute that ¢p(e]) = 2pe]| and ¢p(e,) = 2¢5. So in this new basis
the matrix for ¢p has eigenvalues 2 and 2p with respective p-adic ordinals 0 and 1.

In view of the preceding example, we have to use an alternative procedure to define a
concept of slope for an isocrystal D over Ky = W(k)[1/p] when k is a general perfect field of
characteristic p > 0. The procedure that will work rests on the important Dieudonné-Manin
classification of isocrystals when k is algebraically closed, so we now review this classification.

Let k- k be an algebraic closure of k. For any 1socrysta1 D over Ky we get an isocrystal
over K un — W(k)[1/p] by scalar extension: D = K M ®k, D endowed with the bijective
semlhnear tensor-product Frobenius structure ¢5(c ® d) = o(c) ® ¢p(d). The Dieudonné-

Manin classification [34, 11, §4.1] describes the possibilities for D:

Theorem 8.1.4 (Dieudonné-Manin). For an algebraically closed field k of characteristic
p > 0, the category Mod?(0 of isocrystals over Ko = W(k)[1/p] is semisimple (i.e., all objects
are finite direct sums of simple objects and all short exact sequences split). Moreover, the
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simple objects are given up to isomorphism (without repetition) by the isocrystals D, s in
Ezample 7.3.2 with ged(r,s) = 1.

This theorem says that if k& = k then the isomorphism classes of simple isocrystals over K
are in natural bijection with Q, where a rational number « expressed uniquely in reduced
form s/r with r > 0 corresponds to D, ;. In view of the definition of D, s, where ¢ looks as
if it acts with eigenvalues of p-adic ordinal s/r, the decomposition in Theorem 8.1.4 is akin
to an eigenspace decomposition for a semisimple operator, and we shall write A, to denote
D, ,; this is called the simple object with pure slope o in Mod?{O (when k = k).

For any perfect field k with characteristic p > 0 and any isocrystal D over Ky = W(k)[1/p],
the Dieudonné-Manin classification provides a unique decomposition of D= @1 Rk, D in
the form

(8.1.1) D = @aeqD(a)

for subobjects lA)(a) ~ A having “pure slope o” (and lA)(a) = 0 for all but finitely many
a). For each a = s/r € Q in reduced form (with r > 0), the integer dimlgg\n D(a) =re, is
the number (with multiplicity) of “eigenvalues” of ¢ with slope .

Definition 8.1.5. The a € Q for which D(a) # 0 are the slopes of D, and dim gz, D(w) is
called the multiplicity of this slope. We say that D is isoclinic (with slope o) if D # 0 and
D = D(ay) for some o € Q (i.e., D ~ A, for some e > 1).

In Exercise 8.4.1, an interesting class of examples will be worked out in which slopes
actually do correspond to p-adic ordinals of eigenvalues. For now, we illustrate the definition
of slopes by revisiting D as in Example 8.1.3. It is natural to guess that it either has slopes
{0, 1} or the single slope 1/2 with multiplicity 2. Let us check that the first of these guesses
is correct. Note that by using the basis {€], €5} gives an isomorphism of D with a direct sum
of two 1-dimensional objects on which Frobenius acts (relative to a suitable basis vector over
Kj) via multiplication by 2p and 2. Letting o denote the absolute Frobenius automorphism
of W(F,), a successive approximation argument shows that the self-map of W(F,)* defined

by u — o(u)/u is surjective. In particular, we can find ¢ € W(F,)* such that o(c)/c =1/2,
and over W(F,)[1/p] = Qu» we compute that ¢ fixes cej and multiplies ce} by p. Thus, we

—

get an isomorphism QJ" ®q, D >~ A; & Ay, so the slopes are as claimed.

Remark 8.1.6. The theory of slopes for modules with a “Frobenius” endomorphism arises
in many contexts far beyond the setting of isocrystals over Ky. In §10.3 we will see an
illustration of the relevance of more general theories of “Frobenius slope” in p-adic Hodge
theory.

A convenient visualization device for recording information about slopes and their multi-
plicities is the Newton polygon:

Definition 8.1.7. Let D be a nonzero isocrystal over Ky with slopes {ap < -+ < ay,}
having multiplicities {puo, ..., tn}. The Newton polygon Py(D) of D is the convex polygon
with leftmost endpoint (0,0) and having pu; consecutive segments of horizontal distance 1
and slope «;. ( If D = 0 then define Py(D) to be the point (0,0).) See Figure 2.
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FIGURE 2. A typical Newton polygon

The y-coordinate of the rightmost endpoint of Py(D) is the Newton number
ty(D) =Y " a;dim D(ay).

The rightmost endpoint of Py(D) is (dim D, tyx(D)), and all corners of Py(D) are in Z?2
since a;u; € Z for all i. Note that a nonzero isocrystal D over K is isoclinic of slope « if
and only if Py(D) is a segment with slope «, which is to say that D is isoclinic of slope a.

Lemma 8.1.8. Let Ky = W(k)[1/p] for a perfect field k with characteristic p > 0. If Dy and
Dy are isocrystals over Ky that are isoclinic with respective slopes oy and as then Dy ® Dy
18 1soclinic with slope aq + aw.

Beware that this lemma cannot be proved by “eigenvalue” considerations over l/(él\n, due
to the problems exhibited in Example 8.1.3.

Proof. By the definition of being isoclinic, we can assume k is algebraically closed and we
need to exhibit a decomposition of A,, ® A,, into a direct sum of copies of Ay, 4a,. @ N

Lemma 8.1.8 yields the following analogue of Proposition 8.1.2 that is proved by the same
determinantal isomorphisms as in the proof of Proposition 8.1.2.

Proposition 8.1.9. For an isocrystal D over Ko we have ty(D) = ty(det D), tx(DY) =
—tn(D), and for two isocrystals D and D' over Ky we have

tn(D® D) = (dim D)tn(D") + (dim D')tn (D).

Theed to insert proof!
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(1,0)

Ficure 3. Hodge polygon of an elliptic curve.

(In particular, txy(D®") = r(dim D)"Yy (D) for all v > 1.) Moreover, ty is additive on
short exact sequences of isocrystals over Ky in the sense that if 0 — D' — D — D" — 0 is
a short exact sequence of isocrystals over Ko then ty(D) =tn(D') + tn(D").

For any filtered ¢-module D in MF (f{, there are now associated two convex polygons
with leftmost endpoint (0,0): the Hodge polygon Py (D) associated to Dy € Filg and the
Newton polygon Py (D) associated to the isocrystal D over Ky. One way to relate the two
structures is to consider the relative positions of these two polygons in the plane. This is
best understood with a concrete example, as follows.

Ezxample 8.1.10. Let E be an elliptic curve over K with good reduction, say with & the unique
elliptic curve over Ok having generic fiber £ and with &, denoting its special fiber. Let D be
the filtered ¢-module over K associated to E, which is to say D = H! . (&/ W(k))[1/p] with
its natural Frobenius structure and with Dy filtered by means of the comparison isomorphism
Dy ~ Hz(FE/K). (Recall from Remark 7.3.3 that if K = K, then it is equivalent to work
with Fontaine’s Honda system for &[p*], provided & is supersingular when p = 2.)

The object Dy in Filg is the same for all F, a 2-dimensional K-vector space with gr’ and
gr! each 1-dimensional, so the Hodge polygon Py (D) is the same for all E. See Figure 3.

In contrast, the structure of D as an isocrystal depends on whether the reduction &
over k is ordinary or supersingular. Indeed, using the Frobenius-compatible W (k)-linear
isomorphism H! . (&/ W(k)) ~ D(&[p>])®) from [4, 2.5.6, 2.5.7, 3.3.7, 4.2.14], we see that
Py (D) looks as in Figure 4. In particular, for all E' we see that Py (D) lies on or above
Py (D) and their right endpoints coincide.

Although the Dieudonné-Manin classification does not extend to the case when k is not
assumed to be algebraically closed, the “slope decomposition” (8.1.1) into isoclinic parts
does uniquely descend:

Lemma 8.1.11. For a nonzero isocrystal D over K, whose Newton polygon has slopes
ap < -+ < Qy, there is a unique decomposition D = ©D(«;) into a direct sum of nonzero
subobjects that are isoclinic with respective slopes ay < -+ < au,.
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F1GURE 4. Newton polygons of elliptic curves.

The decomposition in this lemma is called the slope decomposition of the isocrystal D. In
Kedlaya’s theory of slope filtrations for modules over another kind of ring with Frobenius
endomorphism, one gets not a direct sum decomposition into isoclinic parts but rather a
filtration with isoclinic successive quotients; see Theorem 10.3.6.

Proof. By the Dieudonné-Manin classification, the result holds when £ is algebraically closed.
Thus, the only issue is to descend the isoclinic decomposition for D = @ ®r, D. The
natural action of G = G /Ix on D that is semilinear over the l/(él\n-vector space structure
commutes with the Frobenius structure on D. Each ﬁ(ai) is spanned over @ by the images
of all maps A,, — D as isocrystals over @1, which is to say it is spanned over @l[qb] by
all elements v € D such that ¢"i(v) = p*v with s;/r; the reduced form of o; € Q. Hence,
each lA?(ai) is G-stable.

By the completed unramified descent in Lemma 3.2.6, the ¢-stable Ky-subspace D(«;) :=

~

D(y)% of D% = D satisfies I/(?l ®K, D(c) ~ D(«;). Thus, each D(q;) is an isocrystal
over Ky that is isoclinic of slope a;, and @D(«;) — D is an isomorphism of isocrystals over
K. [ |

A nice application of the slope decomposition is given in Exercise 8.4.1, which gives a
situation in which slopes actually do correspond to p-adic ordinals of eigenvalues (with
multiplicity).

Ezxample 8.1.12. Consider the isocrysal D = D(G)[1/p] arising from a p-divisible group G
over k. Since pD(G) C ¢(D(G)) € D(G), we see that p - ¢" preserves the W (k)-lattice
D(G)Y in DY and hence are power-bounded in the sense of Exercise 8.4.1(4). It follows that
the isocrystals (D, ¢) and (DY, p¢") have power-bounded Frobenius. Each therefore has
slopes > 0. By applying duality to a Dieudonne-Manin decomposition, we conclude that
such D have all slopes in the interval [0, 1].
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Vastly generalizing Example 8.1.10, it was conjectured by Katz (and proved by Mazur in
special cases and Berthelot—Ogus [5, 8.36] in general) that if 2" is a smooth proper W(k)-
scheme then the Newton polygon of the isocrystal H. . (25/ W(k))[1/p] lies on or above the
Hodge polygon of the filtered vector space Hiy(Zk,/Ko) and that these polygons in the
first quadrant have the same right endpoint. This positional condition on the two polygons
partially motivates the interest in the following lemma of Fontaine.

Lemma 8.1.13 (Fontaine). Let D € MF}. be arbitrary. The following two conditions are
equivalent.

(1) For all subobjects D' C D, Py(D') lies on or above Py(D').
(2) For all subobjects D' C D, the rightmost endpoint of Py(D') lies on or above the one
for Py(D'); i.e., tn(D') = tu(D').

Moreover, these properties hold for D in MF?{ if and only if they hold for D= I?(‘]‘\“ Rk, D
in MF?_
Kun

Proof. The first condition certainly implies the second. For the converse, we assume that
there is some subobject D' C D such that Py(D') contains a point lying strictly below the
point of Py(D’) on the same vertical line and we seek to construct a subobject D" C D
violating the second condition (i.e., tx(D") < ty(D")). Necessarily D’ # 0. Both polygons
Pn(D') and Py (D') are convex with common left endpoint (0, 0), and by hypothesis the right
endpoint of Py(D') lies on or above that of Py(D’). Hence, there is some 0 < g < dim D’
such that the line = xy meets Py(D’) and Py (D’) at the respective points (xg,yy) and
(w0, yur) where yy < yu.

By small deformation of zy and continuity considerations, we can arrange that neither of
these two points on x = xq is a corner of their respective polygon, so there is a well-defined
slope of the polygons at such points. Depending on which of the two slopes is larger, by
convexity we can move either forwards or backwards to get to the case when (z,yy) is the
final point of the part of Py(D’) with some slope «y; note that we still have 0 < xy < dim D
since the left endpoints of Py(D) and Py (D) coincide with (0,0) and the respective right
endpoints are (dim D,ty(D)) and (dim D, tg (D)) where ty(D) > tg(D) by hypothesis on
D.

Consider the isoclinic decomposition D = @ateA?( ) of D e MF¢. from Lemma 8.1.11.
Let D' = @agaoD( ) and give D’ the subspace filtration from Dy, so D' is a subobject of
D in MF.. By construction, Py(D') is the subset of PN(D) through slopes up to g, so
its right endpoint is (zo,yy). Hence, tn(D') = yy. Since D/ has the subspace filtration
from DK, the filtration jumps in DK stay on or ahead of those of DK for the first dim D’
segments of the Hodge polygons which is to say that PH(D ) lies on or above PH(D) aCross
0 <z <dimD. Thus, tg(D') >y > yy = ty(D’), contradicting our hypothesis about
right endpoints of Hodge and Newton polygons of all subobjectiof D.

Finally, it remains to check that scalar extension by Ky — K" does not affect whether
or not the equivalent properties (1) and (2) hold. This is not obvious because D may have
subobjects that do not arise from subobjects of D. When D satisfies these conditions in
MF %R then so does D in MFf{ (since the formation of Py and Py is unchanged by the
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scalar extension Ky — Kél ). Conversely, suppose D violates these conditions in MF ; we

seek to prove the same for D in MF¢ . The preceding argument produces a slope oy such
that the subobject A = eBa<aolA7( ) of D spanned by the isoclinic parts of D with slope at
most «ag (with A~ 7w given the subspace filtration from DKu,,) has Newton polygon PN(K)
that does not lie on or above the Hodge polygon Py(A). But then A = @a<aOD(a) is a
subobject of D (w1th Ay given the subspace filtration from Dy ) such that A= K Rk, A
as subobjects of D, so Py(A) = Py(A) does not lie on or above Py(A) = Py(A). ]

8.2. Weakly admissible modules. The conditions in Lemma 8.1.13 inspire the following
definition.

Definition 8.2.1. A filtered ¢-module D over K is weakly admissible if ty(D') > ty(D’)
for all subobjects D' C D in MF?(, with equality when D’ = D. (This final condition
ty(D) = tn(D) says exactly that Py (D) and Py (D) have the same right endpoint.)

The full subcategory of MF?{ consisting of weakly admissible objects is denoted MF?{’W‘a'.

Keeping in mind the Newton and Hodge polygons associated to ordinary and supersingular
elliptic curves is the easiest way to remember that it is Py that lies on or above Ppy.

By Lemma 8.1.13, the property of being weakly admissible is unaffected by the scalar
extension Ky — K™. The case of duality requires a bit of thought, since the definition is in
terms of subobjects rather than quotients.

Proposition 8.2.2. If D € MF?{ then D is weakly admissible if and only if its dual DV is
weakly admissible.

Proof. Since tg and ty are negated under duality, it suffices to show that in the definition
of weak admissibility it is equivalent to work with the alternative condition that for all
quotients D — D" we have ty(D") < ty(D") with equality when D” = D. For any D in
MFf{ there is a natural bijective correspondence between subobjects D' C D and quotient
objects m: D — D" (up to isomorphism), namely D' +— D" := D/D" and D" — ker w. Since
ty(D') +ty(D/D") = ty(D) and ty(D') +ty(D/D’) = tn(D) with the values ty (D) and
tn(D) fixed and independent of D', we are done. |

Remark 8.2.3. The weak admissibility property is also inherited under tensor products, but
this is a very difficult fact to prove directly since it is hard to describe subobjects of D ® D’.
The “right” way to understand this compatibility is by using the deeper result of Fontaine
and Colmez [14, Thm. A] that says the weakly admissible filtered ¢-modules are exactly
the Dis(V)’s for crystalline representations V', in which case the compatibility with tensor
products becomes a special case of the general formalism of period rings in Theorem 5.2.1(3).

It is a remarkable fact that MF?{’W'a' is an abelian category (using kernels and cokernels as
in the additive category MF% that is not abelian), and more specifically that any morphism
between weakly admissible filtered ¢-modules is strict with respect to filtrations over K in
the sense of Definition 6.2.5. To avoid later duplication of effort, rather than prove these
properties for MF?{’W'& now, we prefer to establish such a result for a larger category of
structures beyond MF% that we will need later. Whereas MF% was inspired by the study



CMI SUMMER SCHOOL NOTES ON p-ADIC HODGE THEORY (PRELIMINARY VERSION) 111

of smooth proper K-schemes X with good reduction (i.e., X ~ 2% for Z smooth and
proper over O ), we need to enlarge MF?{ to include linear algebra objects associated to the
p-adic representations arising from more general smooth proper K-schemes X (with “bad
reduction”).

What additional structure(s) should we impose on the linear algebra side to capture p-
adic representations arising from X with “bad reduction”? One source of motivation is an
observation of Grothendieck concerning the structure of general ¢-adic representations of
Galois groups of finite extensions K of Q,, (with £ # p), so we now explain his observation.

For simplicity, consider K that is a finite extension of Q,; i.e., assume the residue field
k is finite of some size q. We let ¢ be a prime distinct from p and consider a continuous
representation p : Gxg — GL(W) of Gk on a finite-dimensional Q,-vector space W. Since
GL(W) contains a pro-¢ neighborhood of the identity and the wild inertia group Px C I
is pro-p, by continuity of p there is a finite extension K'/K such that the restriction p|r,,
is tame (i.e., kills Pg/) and even factors through the maximal pro-¢ quotient of the abelian
tame inertia group I%,.

By considering the Ix-action on root extractions of a uniformizer of K (the choice of which
does not matter), one obtains [43, 1.3] a canonical isomorphism t : I} ~ [],, Zy (1) that
is Gp-equivariant, and by [43, 1.4] we have the basic compatibility

(821) tK|I;<, :€(K//K)tK/

By a clever argument with cyclotomic characters on the Galois group of the residue field,
Grothendieck proved [46, App.]:

Lemma 8.2.4 (Grothendieck). The representation on W by the pro-f Z,(1)-quotient of I},
is unipotent if K'/K is sufficiently ramified.

To use the lemma, we first recall a special fact about unipotent and nilpotent matrices over
a field of characteristic 0: the operators log(U) = log(1+(U —1)) for unipotent U and exp(XV)
for nilpotent N are finite sums (not more than the dimension of the vector space) since U — 1
and N are both nilpotent. Hence, these are readily checked to be inverse bijections, and they
carry commutative groups to commutative groups. In particular, any commutative group of
unipotent matrices (such as p(I}.) in Grothendieck’s lemma) is uniquely expressed as the
exponential of an additive group of nilpotent matrices. Hence, the representation of Z,(1)
on W via p|q,., is described by exponentiating Z,-multiples of a nilpotent matrix.

That is, if K’/ K is sufficiently ramified then p| 1, has the unique form g — exp(txr o(9)Nkr)
for Ng. € Homgq,(W,W(—1)) that is nilpotent. By (8.2.1), the modified operator N =
e(K'/K) ' Ny is independent of K'/K and the representation p on I%, has the form g
exp(tx¢(g)N). This is rather striking: for suitable K'/K, the representation p|r, is encoded
on an open subgroup in terms of the single nilpotent operator N!

In geometric contexts arising from étale cohomology or topology, the logarithm of a unipo-
tent inertial action encodes the “monodromy”, so N is called the monodromy operator for
the (-adic representation of Gx on W. It is important to determine how N : W — W(—1)
interacts with the action of p(¢x') for a choice of g-Frobenius ¢x € G (with ¢ = #k). (It
is the “geometric” ¢-Frobenius ¢;(1 whose action on f-adic cohomology has good integrality
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properties in the smooth proper case with good reduction.) To carry this out, since N en-
codes most of the tame inertial action of Ix+ we should first understand how a ¢-Frobenius
element of G conjugates on I, or even I%.

In general, the left action of G on I via conjugation induces a left action by the quotient
group Gy = G /I on the abelian quotient I}, and this is given by the formula

(8.2.2) Grg L = pxeveld)

for any 7 € I}, and any g € Gk lifting g € Gy, where Xcye : Gk — Z* denotes the total
cyclotomic character (whose (-adic component for any prime ¢ # p is the ¢-adic cyclotomic
character). In particular, tx(g79 ") = Xeye(9)tx(T), so for t = tx, we have

exp(t(T)p(9)Np(9)~") = p(9) exp(t(T)N)p(9) ™" = p(grg ")
= exp(t(grg~")N)
= exp(t(1)xe(g)N).

Hence, taking logarithms of both sides and letting 7 vary gives

p(@INp(@)~" = xe(g9)N.

Now choose g € Gy to be the geometric ¢-Frobenius (i.e., the inverse of x — x9), and pick
a uniformizer 7 of K. The extension field K" (7'/¢™) /K is Galois and accounts for the entire
(-adic part of I%.. Thus, it makes sense to define the lift g, € Gal(K"™(7/**)/K) of g by the
condition that it fixes the chosen compatible system of /-power roots of m. Let ¢ = ¢, =
0(7x), s0 ¢ is a linear endomorphism of W depending on 7 and ¢ No~! = x4(g-)N = ¢ ' N.
In other words, Ny = qpN.

In the p-adic case (¢ = p) we shall now impose a similar kind of structure on the semilinear
algebra side.

Definition 8.2.5. A (¢, N)-module (over Kj) is an isocrystal (D, ¢p) over Ky equipped
with a Ky-linear endomorphism Np : D — D (called the monodromy operator) such that
Npop = popNp. The notion of morphism between such objects is the evident one. The
category of these is denoted Mod%\[.

A filtered (¢, N)-module (over K) is a (¢, N)-module D over K for which Dy is endowed
with a structure of object in Filx. The notion of morphism between such objects is the
evident one, and the category of these is denoted MFf(’N.

In Definition 8.2.5 we do not assume Np is nilpotent; it will be deduced later (in Lemma
8.2.8). We write K[0] to denote the 1-dimensional unit object of MF% (i.e., D = K, with
gr’(Dg) # 0 and ¢ equal to the Frobenius automorphism); this is a “unit object” for the
tensor product. Upon endowing it with the monodromy operator N = 0 it likewise becomes
the unit object for the tensor product in MF?(’N. Note that in general MF?( is exactly the
full subcategory of MF?}’N consisting of objects whose monodromy operator vanishes.

The categories Mod?gév and MF%’N have evident notions of short exact sequence, kernel,
cokernel, image, and coimage. We also define duals and tensor products in the evident
manner, and the one subtlety is how to define the monodromy operator on the tensor product
and dual. To see how to define Npgps in terms of Np and Np., and how to define Npv in
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terms of Np, we use the motivating situation of ¢-adic representations of Gk (with ¢ # p)
to see what to do: if p(g) = exp(t(g)N) and p'(g) = exp(t(g)N’) then

(8.2.3) (P20 )(g)=plg) @0 (g) = exp(t(g)(N@1))oexp(t(g)(l® N))
(8.2.4) = exp(t(9)(N®1+1®@N'))

p'(g) = plg™")" = exp(—t(g)N").
This motivates the following definitions (which one checks do satisfy “N¢ = p¢pN”):

Npsp = 1p® Npr+ Np ® 1pr, Npv = —Ng.

(Note that the evaluation pairing D® DY — K[0] is thereby a morphism in Mod%"1) These
formulas may look familiar from the theory of Lie algebra representations, and the similarity
is no coincidence since the formula p(g) = exp(t(g)NV) essentially makes the monodromy
operator like the derivative of the representation at the identity element.

We likewise define N on Hom(D, D) by the rule N(L) = Np o L — L o Np, and in this
way the natural isomorphism D' ® DY ~ Hom(D, D’) in Mod}*'j{0 is an isomorphism in MF?(’N.
By combining the procedures for tensor products and quotients, we can define exterior and
symmetric power operations on MF‘f{’N.

Remark 8.2.6. Beware that for D in MF?}’N, the concept of subobject of D is very sensitive to
the specified monodromy operator N on D since a subobject must be stable by N on D. For
example, if we replace the given N with 0 then we get a new object in place of D and it has
many more subobjects than the original D does in general since the monodromy-stability
condition has become much weaker.

Ezample 8.2.7. For D € MF%", consider the isoclinic decomposition D = @eqD(a) of

the underlying isocrystal. By the definition of D(«), its scalar extension lA?(a) over @ is
spanned by vectors v such that qﬁ%(v) = p*v for s/r the reduced form of «, so

¢5(Nv) =p "N¢(v) = p”"No.

But (s —r)/r=a—1,so Nv € D(a — 1). Hence, by descent from @, we get N(D(«a)) C
D(a — 1). Due to this relationship between N and the D(«)’s, we see that @,<,D(«) is
N-stable for any a € Q.

This has two applications. First, as in the motivating /-adic case, nilpotence holds:

Lemma 8.2.8. For any D € Mod(f(’év, the monodromy operator Np on D s nilpotent. In
particular, if dim D =1 then Np = 0.

Proof. The intuitive idea is that ¢~'oNo¢g = pN, so the finite nonempty set of eigenvalues of
N in K is stable under p-multiplication and thus is {0}, which is to say that NV is nilpotent.
But since ¢ is not generally linear this argument is merely suggestive of nilpotence and
is not a proof. To carry out an actual proof based on this idea we shall use the isoclinic
decomposition D = @neqD(cr). We saw in Example 8.2.7 that N(D(«)) € D(« — 1). Since
D(«) = 0 for all but finitely many «, the nilpotence of N now follows. [

Definition 8.2.1 now extends to incorporate a monodromy operator:
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Definition 8.2.9. An object D € MF?{N is weakly admissible if for all subobjects D' C D
in MF%" (so D' is required to be N-stable in D) we have ty(D’) > ty(D') with equality for
D' = D. Equivalently, for all quotient objects D — D” in MF%" we have ty(D") < ty(D")
with equality for D" = D.

These objects constitute a full subcategory MF2Y™* of MF%™Y. (Clearly MF%"® consists
of objects in MF$""* for which N = 0.)

Using Example 8.2.7, Fontaine’s Lemma 8.1.13 carries over verbatim to MF?}’N, and so

weak admissibility can also be described in terms of Hodge and Newton polygons for subob-
jects or quotients of D. Weak admissibility is a very subtle link between three structures: the
Frobenius, the filtration, and the monodromy operator (whose only role here is to constrain
the possible subobjects in MF}’?N via the N-stability condition). Since Npv = —N}), we
see as in the case N = 0 that D in MF?}’N is weakly admissible if and only if DV is weakly
admissible.

Continuing the theme of Remark 8.2.6, what happens if we simply redefine the monodromy
operator to be 07 That is, for D in MF?}’N, consider the object D’ that is obtained by setting
the monodromy operator to be 0 but leaving everything else (the underlying isocrystal over
Ky and filtration structure over K') unchanged. It can and does happen when dim D > 1
that D may be weakly admissible whereas D’ is not! The problem is that the N-stability
condition on subobjects of D’ is weaker than that for D, so D’ may admit K,-subspaces
that are subobjects (i.e., Frobenius-stable) but are not subobjects of D (i.e., not stable by
Np). Some of these extra Ky-subspaces may lead to violation of the weak admissibility
property for D’ even if D is weakly admissible. This phenomenon already occurs in the
2-dimensional case for K = Ky = Q,, as we will see in the classification of 2-dimensional
objects in MF&{V’W'& in §8.3.

The next two results in MF%" could have been proved much earlier in MF%, but we
waited so that we could handle MFf{’N in general.

Proposition 8.2.10. If0 — D' — D — D" — 0 is a short exact sequence in MF%N and
any two of the three terms are weakly admissible then so is the third.

Proof. If D is weakly admissible then for any subobject D] of D’ we may view D] as a
subobject of D and hence ty (D)) < tn(D}). If in addition D” is weakly admissible then
ty(D") = ty(D"), so ty(D') =ty (D) —ty(D") = ty(D) — tn(D") = tn(D'). Thus, D is
weakly admissible when D and D" are so. Applying these considerations after dualizing the
original exact sequence and using the general identity that t5 and ¢y negate under duality,
we conclude that if D and D’ are weakly admissible then so is D”.

Now suppose that D" and D" are weakly admissible. By additivity in short exact sequences
we see that ty (D) = ty(D) due to the analogous such equalities for D' and D”. It remains
to prove ty (D) < ty(D;) for all subobjects D; C D. We let D} = D' N Dy and give (D})k
the subspace filtration from either (D;)x or D (these subspace filtrations coincide!), and
let DY = D,/D} with the quotient filtration on (D7)xk. There is a natural injective map
j: D! — D"=D/D"in MF‘f{’N, but a priori it may not be strict (i.e., the quotient filtration
on (D7)k from (D;)x may be finer than the subspace filtration from D). Since D is a
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subobject of the weakly admissible D', ty (D)) < tx(D}). Thus,
t(D1) =ty (D)) + tu (DY) < tv(Dy) + tu(Dy)

and ty(Dy) = tn(D}) +ty (DY), so it suffices to prove that ty (DY) < tn(D7).

Let j(DY) denote D} endowed with the subspace filtration from D”, so the natural map
D! — j(DY) in MF%" is a linear isomorphism. We have ty(D}) = ty(j(D?)) since j is
an isomorphism in the category Mod?(0 of isocrystals over K. Hence, it is enough to prove
tg(DY) < ty(5(D7)). But j(DY) is a subobject of the weakly admissible D", so ty(j(DY)) <
tn(j(DY)) and hence our problem reduces to proving the inequality tgx (D7) < tg(j(DY))
between Hodge numbers for the bijective morphism j : DY — j(D}) in MFQ™.

In general, if h : A’ — A is a bijective morphism in Filgx then we claim that t5(A’) <
ty(A) with equality if and only if 4 is an isomorphism in Fil (i.e., it is a strict morphism). To
prove this, first note that ty(A) = ty(det A) and t5(A") = ty(det A'), and a consideration
of bases adapted to filtrations shows that a bijective morphism in Filx is an isomorphism in
Filg if and only if the induced map on top exterior powers is an isomorphism in Filg. Thus,
by passing to det h : det A’ — det A we reduce to the 1-dimensional case, for which ¢y is
the unique 7 such that gr’ # 0. This concludes the argument. |

We now come to the remarkable fact that in the presence of the weak admissibility condi-
tion the filtration structures behave as in an abelian category:

Theorem 8.2.11. Let h : D — D’ be a map in MF?(’N’W'&. The map h is strict (i.e.,
D/kerh — imh is an isomorphism in MF?{’N), and ker h and coker h with their respective
subspace and quotient filtration structures are weakly admissible. In particular, the object
imh ~ D/ker h is weakly admissible and the category MF%’N 15 abelian.

Proof. Consider the diagram
ker h — D —» coimh — im h — D’ — coker h

in MF%" with coim h := D/ ker h given the quotient filtration structure. Both ker & and im h
have subspace filtration structures (from D and D’ respectively), and coker h has the quotient
filtration structure from D’. Since the map coim h — im h is a bijective morphism in MF?{’N,
the argument at the end of the proof of Proposition 8.2.10 gives tgy(coimh) < ty(imh)
with equality if and only if h is a strict morphism. Weak admissibility of D gives the
inequality ty(coimh) < ty(coimh) for the quotient object coimh of D, and likewise the
weak admissibility of D’ gives the inequality ¢y (im h) < ty(im h) for the subobject im h of
D'
Putting these inequalities together gives

ty(coimh) < ty(coimh) < ty(imh) < ty(imh),

but the Newton numbers given by the outer terms are equal since the map coimh — imh
on underlying isocrystals over Kj is an isomorphism (although we have not yet shown the
induced map over K to be an isomorphism in Fily). Hence, equality holds throughout, so
the equality in the middle gives that h is a strict morphism. That is, coimh — imh is an
isomorphism in MF$".
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Since ker h = ker(D — coim h) and coker h = D'/im h, and we know that weak admissi-
bility is inherited by the third term of any short exact sequence in MF%’N in which two of
the objects are weakly admissible, it remains to prove that the object A := coimh ~ imh
in MFf{’N is weakly admissible. It is a subobject (or quotient) of a weakly admissible object,
so the only aspect requiring justification is that t5(A) = ty(A). However, this equality was
already proved above. |

In §9.2 we shall define an intermediate (Q,, Gk)-regular Ky[G k|-algebra
Bcris - Bst - BdR

such that By admits a natural injective Frobenius-semilinear endomorphism ¢ : By — By
extending the one on B, and a natural Ky-linear derivation N : By, — By such that Ny =
ppN and Beis = BY™° (so N is even Big-linear). Also, the natural map K ®g, By — Bar
will turn out to be injective, so Ko = BS* and the functor V ~» (By ®q, V)Cx is a covariant
functor

Dy : Repr(GK) — MF?(’N.

For all Bg-admissible representations V' (to be called semistable representations), we will
prove that Dg (V) is weakly admissible. Hence, we will get a covariant faithful tensor functor

Dy : Rep (V) — MEgR™

Later we will show that this is fully faithful. This is why weak admissibility is an interesting
notion for our purposes. It is a deep theorem of Fontaine and Colmez [14, Thm. A] that this
functor is an equivalence of categories. Passing to objects with vanishing monodromy then
yields an equivalence D, : Repgips(V) ~ MF?(’W‘a'.

8.3. Twisting and low-dimensional examples. The construction of period rings is rather
dry and boring, and likewise calculations in semi-linear algebra can feel quite dull without
some sense of why anyone should care. This section represents a bit of a compromise:
accepting on faith some properties of B and B to be developed in §9, we wish to illustrate
the theory of filtered (¢, N)-modules by working out some basic examples and giving Galois-
theoretic interpretations to the result. The reader who is uncomfortable with this can skip
this section until reading §9, but probably there will be more motivation to wade through
§9 (and more appreciation of how one works with filtered (¢, N)-modules) if one reads this
section first, at least in a superficial manner. This area of mathematics abounds in unsolved
problems of pedagogy.

To get started, we introduce a twisting operation that corresponds (under suitable con-
travariant Fontaine functors D = Homgq, ¢, (-, B)) to the operation V'~ V ®q, Q,(7)
on the Galois side for i € Z. Suppose that B C Bgg is a Q,|Gk]-subalgebra containing
the canonical Z,(1) (of which the two most important examples are B and By). For
any basis ¢ of Z,(1), elements of W' = Homgq,(V (i), B) can be written as w’ = ¢t "w for
w € W := Homgq,(V, B), so w’ € W' is Gg-invariant if and only if w € W is Gk-invariant.
Clearly w' lies in Homq, (V, " Bjy) if and only if w € Homq, (V, " Bjy). The subring Beys
will contain ¢ with the Frobenius of B acting on ¢~* as multiplication by p~¢, and since
t € Beis we also will have N(t) = 0. Thus, we are led to the following definition.
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Definition 8.3.1. For D € MF?{’N, the i-fold Tate twist of D is the object D(i) whose
underlying Ky-vector space is D, monodromy operator Np;y is Np, Frobenius operator ¢ p
is p~'¢p, and filtration structure over K is Fil"(D(i)x) = Fil'™(Dy).

Beware that this definition is adapted to the use of contravariant Fontaine functors
D3 (V) = Homgq,[g.)(+, B). If using the covariant Dp then i should be replaced with —i
everywhere on the output. (It is always confusing to keep track of signs for Tate twists. It
is best to rederive things with Q,(1) by a little calculation using ¢ each time rather than
trying to memorize formulas.)

Using the above definition, the Hodge polygon Py (D(i)) is obtained from the Hodge
polygon Py (D) by decreasing all slopes in the polygon by ¢, and likewise for Newton polygons.
Thus, ty(D(i)) = tg(D) —idim D and likewise for ty. Since D' — D’(i) sets up a bijection
between the set of subobjects of D and the set of subobjects of D(i), we see that D is weakly
admissible if and only if D(i) is weakly admissible. In terms of later contravariant period
ring constructions, we will have D3 (V' (i)) ~ D3 (V)(i) for any V' € Repq, (Gk) and i € Z,
and similarly for D’

cris*

Ezrample 8.3.2. We can now parameterize all 1-dimensional objects in MF?}’N and describe
the weak admissibility property in terms of the parameters. By 1-dimensionality, we have:
Np =0, D = Kpe, and ¢(e) = e for some A € K. If we replace e with ¢/ = ce for some
¢ € Kj then X is replaced with A = (o(c)/c)A, where o is the Frobenius automorphism
of Ko = W(k)[1/p]. In particular, ord, () is independent of the choice of basis; this is the
unique slope of D and it is equal to ty (D).

Since dim D = 1, there is a unique r € Z such that gr"(Dg) # 0, which is to say
Fil"(Dg) = Dg and Fil""'(Dg) = 0; hence, tyz(D) = r. By passing to D(r) if necessary,
we get to the case where gr’(Dg) # 0. Then the Hodge polygon Py (D) is the horizontal
segment with endpoints (0,0) and (1,0), and Py (D) is the segment with endpoints (0, 0)
and (1,ord,(\)). Hence, a 1-dimensional D with gr’(Dg) # 0 is weakly admissible if and
only if ord,(A\) = 0, which is to say A € W(k)*. (In general, the necessary and sufficient
condition for weak admissibility is ord,(\) = r, where ord,(\) = ty(D) and r = ty(D).)

Upon specifying the discrete filtration parameter r = ty (D) € Z and the discrete slope
parameter p € Z, the isomorphism class is determined by A € K with ord,(\) = p up to
the equivalence relation A ~ (o(c)/c)A for ¢ € K (or even just ¢ € W(k)*).

We can refine the preceding example as follows. For n > 1 let F': W — W be the
relative Frobenius morphism of the smooth affine F,-group of units in the length-n Witt
vectors. (See Exercise 7.4.5.) There is a short exact sequence of smooth affine F,-groups

(8.3.1) 1 — W, (F,)* - W %W =1

with p(z) := F(z)/x and W, (F,)* denoting the finite constant F,-group (Z/p"Z)*. (By
“short exact” we can take the meaning that one has short exactness on geometric points and
the left term is the functorial kernel of p.) Thus, passing to k-points on (8.3.1) gives rise to
an isomorphism

Wa (k) /(Wi (k) ) = H (k, Wi (F,) ) ~ HY(Gy, (Z/p"Z)")
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because H'(k, W) = 1 (as W has a finite filtration by smooth closed k-subgroups with
successive quotients G, and G,, each of which has vanishing degree-1 cohomology over k).
Passing to the inverse limit over n and using successive approximation and p-adic complete-
ness and separatedness of W(k) then gives a natural isomorphism

(8.3.2) W(k) /(W (k)*) ~ Homeon (G, Z, ) = Homgg, (Gx, Q)
onto the group of unramified p-adic characters of Gg.

In other words, we have parameterized such characters by integral units A € W(k)* up to
the equivalence relation A ~ (a(c)/c)A = p(c)- X for ¢ € W(k)*. But such equivalence classes
have been seen in Example 8.3.2 to also parameterize isomorphism classes of 1-dimensional
weakly admissible filtered (¢, N)-modules D over K with ¢y (D) = 0, so to each continuous
unramified character n : Gx — Qp we can associate the isomorphism class D, of a 1-
dimensional weakly admissible filtered (¢, N)-module over K. This abstract conclusion can
be interpreted very nicely:

X

Lemma 8.3.3. The bijective correspondence n — D, from continuous unramified characters
of G to isomorphism classes of 1-dimensional weakly admissible filtered (¢, N)-modules over
K with ty = 0 is the contravariant Fontaine functor D}, = Homq . (-; Bais). That is,

D}%i(Qp(n)) is in the isomorphism class D,,.

In terms of the covariant Fontaine functor, Deis(Q,(n)) = D,)-1.

Proof. Let n : Gk — Z, be an unramified character. The proof of the isomorphism (8.3.2)
produces a A € W(k)* such that for w € W(k)* satisfying p(w) = X we have g(w) = n(g)w

for all g € Gx. The choice of w is unique up to a Z;-multiple, so the line D = Kow C W (k)
only depends on A. The construction of B to be given in §9.1 realizes it as a Gx-stable K-

subalgebra of Byg containing W(R)[1/p] in a Frobenius-compatible manner and hence con-
taining W(k)[1/p] = K& in a Galois-equivariant and Frobenius-compatible manner. Thus,

D! (Qp(n)) = Home[GK (Qp(n), Beris) contains a nonzero element e corresponding to the
map 1 — w. But dimg, D} (Qp(n)) < dimq, Qp( ) =1, so DZ; (Qp( )) is 1-dimensional

cris

over Kj with basis e. Clearly the nontrivial gr’ is for i = 0 (as w € K‘m ), and ¢(e) = e
because o(w) = A\w by the way we chose w. |

In Example 9.1.12 we will verify that D} .(Q,(1)) identifed with the Tate twist (K[0])(1)
of the unit object (if we use the covariant D5 the answer would be dualized: (K[0])(—1)).
Hence, in view of the tensor compatibility of the (contravariant) Fontaine functors and
the direct calculation of the filtered ¢-module D7, (Q,(1)), it follows from Lemma 8.3.3
via Tate-twisting that every 1-dimensional weakly admissible filtered (¢, N)-module over K
is Dx.. applied to the Tate twist of an unramified character (all of which are crystalline,
since we shall see that the crystalline property can be checked on the inertia group and is
invariant under Tate twisting). Since D}, will be shown to be fully faithful on crystalline

representations, it follows there are no further crystalline characters to be found. That is,
granting basic properties of Bes and D to be proved later, we have shown:

Proposition 8.3.4. The functor D}, is an equivalence of categories between 1-dimensional
crystalline representations of G and 1-dimensional weakly admissible filtered (¢, N')-modules
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over K. The characters arising in this way are precisely the Tate twists of the Z; -valued
unramified characters of G .

Our classification of 1-dimensional crystalline representations of G i did not require know-
ing in advance that D} (V') is weakly admissible when V is crystalline, nor that every weakly
admissible module over K arises from a semistable representation. For the 2-dimensional
case it seems hopeless to give an elementary analysis of the classification problem for crys-
talline or semistable representations for all K (even granting elementary facts about By
and By).

The rest of §8.3 is a very long “exercise” in linear algebra: we will solve the purely algebraic
problem of classifying all 2-dimensional weakly admissible filtered (¢, N)-modules over K =
Q,. If we grant (as will be proved in Proposition 9.2.11, Proposition 9.2.14, Theorem 9.3.4,
and Remark 11.3.4) that there is a dimension-preserving contravariant tensor equivalence
between semistable representations and weakly admissible filtered (¢, N)-modules via an
appropriate period ring By, under which crystalline representations are precisely those for
which N = 0, we will have then classified all 2-dimensional semistable representations of
Gq,.

6116 reason that the case K = Q, is much simpler to analyze on the linear algebra side
than the case of general K is that in such cases ¢ is linear over Ky = K and Exercise 8.4.1
relates slopes to actual eigenvalues (i.e., roots of a characteristic polynomial).

For the 2-dimensional classification in ¥ MF giv’ we will encounter both irreducible and
reducible cases, and within the reducible cases it is the non-semisimple ones that will be
the most interesting (especially the relationship between the Hodge-Tate weights of their
“diagonal characters”). We shall state the classification (Theorem 8.3.6) in terms of the
contravariant Fontaine functor V' — D7 (V) = Homq,[cq,](V, Bais) because Dy (Qp(r))
has nonzero gr’ precisely for i = r (rather than ¢ = —r), but the main work in the proof
involves only semilinear algebra (for which all relevant notions have already been defined
already, whereas Bes and D.s will be defined in §9).

Let (D, ¢, Fil*(D), N) be a 2-dimensional weakly admissible filtered (¢, N)-module over
Q,. By applying a suitable Tate twist (in the sense of Definition 8.3.1), we may arrange that
Fil’(D) = D and Fil'(D) # D. To systematically treat all possibilities, we need to consider
various special situations.

First consider the special case when the filtration structure is trivial: Fil'(D) = 0. In
this case we shall drop the 2-dimensionality hypothesis and allow n = dimg, D > 1 to be
arbitrary. Removing the effect of the Tate twist at the start (i.e., assume Fil"(D) = D and
Fil"**(D) = 0 for some 7), these are the cases in which the Hodge polygon is a straight line.
In this case by convexity and agreement of both endpoints it follows that Py (D) = Py (D),
so in terms of the isoclinic decomposition there is only one slope. Hence, without any
hypotheses on dimg D we must have N = 0 and ¢ : D ~ D with pure slope 0, so by
Exercise 8.4.1 the map ¢ has characteristic polynomial f,(X) € Z,[X] with all roots in Z: :

The subobjects are the p-stable subspaces, each of which has Hodge and Newton polygons
that coincide (as segments along the x-axis). Hence, weak admissibility always holds. Also,
there is always a lattice A C D that is p-stable and on which ¢ acts as an automorphism.
Indeed, ¢ is ‘power-bounded (in the sense of Exercise 8.4.1(4)) since f, € Z,[X] (compute
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after extending scalars to acquire all eigenvalues, and use generalized eigenvectors), so for
any Z,-lattice L C D the span A = Z@o ¢©"(L) is bounded and hence is a @-stable lattice.
But det ¢ € Z%, so ¢ is an automorphism of A.

To summarize, when the filtration structure is trivial we are simply studying Q,-isogeny
classes of pairs (A, T") consisting of a lattice A over Z, and a linear automorphism 7" of A. In
other words, this is the study of GL,(Q,)-conjugacy classes of elements of GL,,(Z,). These
will correspond (via D) to unramified n-dimensional representations of G, (which may
be semisimple or not, and when irreducible are never absolutely irreducible because G, is
abelian). Removing the effect of the Tate twist, the cases in which the Hodge polygon is
a straight line correspond to cyclotomic twists of unramified representations. In particular,
these have a single Hodge-Tate weight (equal to the unique ¢ such that gr'(D) # 0 — rather
than gr=/(D) # 0! — when we use the contravariant Fontaine functors). We record our
conclusions in this special case:

Proposition 8.3.5. The n-dimensional weakly admissible filtered (¢, N)-modules over Q,
with a single Hodge—Tate weight have vanishing N, and in case of Hodge—Tate weight O are
parameterized up to isomorphism by GL,(Q,)-conjugacy classes of elements of GL,,(Z,). In
general if the Hodge—Tate weight is i then such objects naturally correspond under D}, to
X'-twists of n-dimensional unramified p-adic representations of Gq,

We now turn to the more interesting case in which there are two distinct filtration jumps,
or in Galois-theoretic terms (via D7) two distinct Hodge-Tate weights. Taking into account
our initial Tate twist to get to the case Fil’(D) = D and Fil'(D) # D, we must have that
L :=Fil'(D) is a line in D. There is a discrete invariant r > 1: Fil/(D) = L when 1 < j <7
and Fil"™ (D) = 0. In terms of Galois representations (using D7), the Hodge-Tate weights
are 0 and r (or more invariantly, r is the gap between the Hodge-Tate weights). In particular,
tg(D) = r. It will be convenient to separately treat the cases when N = 0 and when N # 0
(i.e., crystalline representations and semistable non-crystalline representations).

First we consider the case N = 0, which is to say 2-dimensional crystalline representations
with two distinct Hodge-Tate weights, Once again, we make an initial Tate twist so that the
smaller such weight is 0.

Theorem 8.3.6. The set of isomorphism classes of 2-dimensional crystalline representations
V' of Gq, that have distinct Hodge-Tate weights {0,7} with r > 0 and are not a direct sum
of two characters is naturally parameterized by the set of quadratic polynomials f(X) =
X? +aX +b € Z,[X] with ord,(b) = r, where f is the characteristic polynomial of ¢ on
D = D:ris(v)'
If f is irreducible then D = Que; ® Qpex with Fil (D) = Qpe; precisely for 1 < j < and

(] = 0 :2) The crystalline Galois representation

*
cris

1 (D) contravariantly associated to

D s irreducible. '
If f is reducible with distinct roots then D = Q,e; @ Qpea with Fil’ (D) = Q,(e1 + e2)
precisely for 1 < j < r and each e; an eigenvector for p. If f is reducible with a repeated
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root A (so r € 2ord,(\) € 2Z%) then the same description holds except that e; spans the
A-eigenspace and ¢ has the matrix ())\ }\ .

In all of these cases, ¢ does not act as a scalar on D. Also, the associated Galois represen-
tation V(D) is reducible if and only if f has a unit root € Z (so this never occurs when
f has a repeated root), in which case the other root is p" ' for some p' € Z5 and Vi (D) is
an extension of the unramified character 1, associated to pn by the r-fold Tate twist X", of
the unramified character 1, associated to '

Remark 8.3.7. This theorem does not claim that every 2-dimensional crystalline represen-
tation of Gq, with distinct Hodge-Tate weights is determined up to isomorphism by the
monic quadratic characteristic polynomial of Frobenius in Q,[X]. Indeed, each such qua-
dratic polynomial that is reducible can arise in two ways: from a direct sum of characters
with distinct Hodge-Tate weights or from a non-split extension of the lower-weight character
by the higher-weight character. Keep in mind that the slopes of this polynomial (i.e., the
p-adic ordinals of its roots) are not the Hodge-Tate weights in general, but by Exercise 8.4.1
they are the slopes which define the Newton polygon of D.

Proof. Let f,(X) = X?+aX +b € Q,[X] be the characteristic polynomial of ¢ acting on
D, so b # 0. The condition r =t (D) = ty(D) = ord,(b) forces b € p"Z).

Step 1 (Irreducible case). Suppose f, is irreducible over Q,, so its roots in Qp have
the same valuation and hence this valuation is > 0 (as r > 1). Necessarily a € pl"/2Z, in
such cases. In these cases there are no nontrivial subobjects of D, and in particular ¢(L) is
not contained in L. Thus, if we choose a basis vector e; for L then ey := ¢(e;) is linearly
independent from e; and {ej, es} is an ordered basis of D.

The matrix of ¢ relative to this ordered basis is ((1) :2) Since Fil/(D) = L = Qe for
1 < j < r, and otherwise Fil/(D) is equal to D (for j < 0) or vanishes (for j > r + 1), we
have classified the cases with irreducible f, up to isomorphism in terms of the parameters
(a,b) € pl"/2'Z, x p"Z* (subject to the constraint that b* — 4a a nonsquare in Q). These
are exactly the 2-dimensional crystalline representations of Gq, with Hodge-Tate weights 0
and r for which ¢ acts irreducibly on D. Removing the effect of the initial Tate twist on
these examples amounts to allowing the smaller of the two distinct Hodge-Tate weights to
be an arbitrary integer.

Step 2 (Reducible case with distinct eigenvalues). Assume f,(X) = (X — A\)(X — Ag)
with \; € Q, and ord, (A1) < ord,(Az). These ord’s are both integers. The equality ¢y (D) =
tn(D) from the weak admissibility requirement says r = ord, (A1) +ord,(Az2), so ord,(A2) > 1
since r > 1. We separately treat the cases when A\; # Ay and \; = As.

First assume that the eigenvalues are distinct, and choose an eigenvector e; for A;, so D =
Qpe1 @ Qpes. The only nontrivial subobjects of D are the two eigenlines, with ¢y (Qpe;) =
ord,();). Weak admissibility amounts to the requirement ¢ (Qpe;) < tn(Qpe;) = ord,(\;) for
both i’s. The filtration of the line Q,e; has its unique nontrivial graded subquotient in degree
r (ie., tg(Qpe;) = r) if this line is equal to L and in degree 0 (i.e., ty(Qpe;) = 0) otherwise.
In particular, t5(Qpe;) = 0 for both i’s, so each \; is integral. But ord,(A\2) > ord,(A;) >0
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with ord, (A1) + ord,(A2) = r > 1, so ord,(A\1) < r. Hence, necessarily L # Qe;, so
tn(Qper) = 0. We separately consider the possibilities that L = Qe or not.

The case L = Qpez can only occur if ord,(A;) = 0 and ord,(A2) = r, in which case it
corresponds to D that is a direct sum of the 1-dimensional objects Qpe; (the eigenline for
the smaller slope) and L = Qez, with these subobjects having respective filtration jumps
in degrees 0 and r. In contravariant Galois-theoretic terms, by Lemma 8.3.3, these are
the direct sums ¢y @ 19(r) with each 1; unramified (and the integral units A\; and A\y/p”
encode the Frobenius action for v;); removing the effect of the Tate twist makes this into
the reducible decomposable crystalline case with distinct Hodge-Tate weights.

Now suppose L # Qpes (and still A\; # Ay), so by scaling the e;’s we can arrange that
L = Qp(e1 + e2). In such cases 0 = t5(Qpe;) < tn(Qpe;) by weak admissibility. We
have a pair of distinct p-eigenvalues \; € Q) with 0 < ord,(A1) < ord,()z) (by weak
admissibility) and ord, (A1) + ord,(A2) = r, D = Qpe1 & Qpez, and ¢(e;) = A\;e;. Moreover,
Fil/(D) = Qp(e; + e3) for 1 < j < 7, and Fil/(D) = D (resp. Fil/(D) = 0) if j < 0 (resp.
Jj=r-+1). Since tg(Qpez) = 0 < ord,(A2) = tn(Qpez), the subobject Qes is not a weakly
admissible filtered ¢-module. Hence, the only possibility in these cases for a nontrivial weakly
admissible subobject is Qpe;, and this happens if and only if ord,(A;) = 0. Thus, we have
obtained all crystalline representations of Gq, with distinct Hodge-Tate weights 0 and r > 1
(under the contravariant Fontaine functor) such that the representation is not a direct sum
of two characters and the p-action has distinct eigenvalues. These are parameterized by
unordered pairs of distinct nonzero A\, X' € Z, such that ord,(\) + ord,(\) =r > 1.

In terms of this parameterization, the reducible Galois representations are exactly those
for which one (and then necessarily only one) of A or \"is in Z)*. Moreover, in these reducible
(non-decomposable) cases the unique nontrivial weakly admissible subobject of D is the ¢-
eigenline for the unit eigenvalue, so in terms of the contravariant Fontaine functor the Galois
representation has the nonsemisimple form

(9 )

with ) and 9" unramified characters of Gq, (valued in Z)). These unramified characters
correspond respectively to the units A\; and A\y/p” in the above notation, and our analysis
shows that the knowledge of these eigenvalues determines the Galois representation up to
isomorphism!

This gives two interesting results: for any pair of unramified characters ¥, v’ : Gq, = Z)
and any r > 1 there is exactly one non-semisimple crystalline representation p,, 4+ containing
Y'(r) and admitting 1 as a quotient (in fancier language, the space

Heria(Qp, 710 (r) o= Bty (1,9 (r) © Bxtq g (%, 9 (r) = HY(Qp, v~/ (1))

of extension classes with underlying crystalline representation is a 1-dimensional Q,-subspace
of H'(Qy, ¢~ (r))), and more importantly there is no non-split crystalline extension of
Y'(r) by ¢ with » > 1. That is, if x,x’ : Gq, = Q, are crystalline characters (i.e., Tate
twists of unramified characters) with respective Hodge-Tate weights n and n’, then there
is no non-split crystalline extension of x’ by x if n’ > n. In other words, the Hodge-Tate
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weights can only “drop” as we move up a Jordan-Holder filtration of a reducible non-split
crystalline Galois representation.

Step 3 (Reducible case with equal slopes). There remains the case in which A\; = Ay = A,
so 2ord,(A) = r. (Hence, r is even and A € pZ,.) We cannot have that ¢ is a scalar, for
otherwise L would be a subobject yet ty(L) = r = 2ord,(\) whereas ty(L) = ord,(\) <
2ord,(A), contradicting weak admissibility. The A-eigenspace is therefore 1-dimensional, and
if we choose such an eigenvector e; then arguing as above allows us to choose a basis {eq, e5}
for D such that L = Q,(e; + e2) and ¢ has the matrix

(0 3)

We have uniquely determined the filtration on D, so these cases are parameterized by the
arbitrary nonzero A € pZ, (with r = 2ord,(A)).

There are no nontrivial weakly admissible proper subobjects since the unique eigenline
Qpe1 has Hodge number 0 yet it has Newton number ord,(A) # 0. The corresponding
Galois representations via the contravariant Fontaine functor are the irreducible crystalline
representations with Hodge-Tate weights 0 and r € 2Z7 such that the p-action has a double
root (with slope r/2) for its characteristic polynomial. The explicit description shows that
up to isomorphism such examples are completely determined by this repeated root A &€
p'/ 2Z; (in particular, ¢ is non-scalar on D), so this nicely fits with the parameterization by
unordered pairs {A, \'} of distinct elements as given in Step 2, now filling in the cases with
A = X. Note that we can remove the effect of the initial Tate twist by allowing any A\ € Q,
(in which case ord,(\) € Z is the average of the two distinct Hodge-Tate weights). [ |

Finally, we consider 2-dimensional semistable Gq,-representations that have a nonzero
monodromy operator, which is to say that they are non-crystalline. The presence of this
nonzero operator severely restricts the possible subobjects, and so correspondingly the de-
termination of all possibilities winds up being much easier than in the crystalline case (where
the subobject property came down to @-stability).

Let D be a 2-dimensional weakly admissible filtered (¢, N)-module over Q, with Np # 0.
This Np is a nonzero nilpotent operator, so over the completed maximal unramified extension
W(F,)[1/p] the relation N¢ = pp N and the Dieudonné-Manin classification force there to
be exactly two distinct slopes which moreover differ by 1. Hence, f,(X) € Q,[X] has roots

A, Ay € Q; with ord, (A1) = ord,(A2) — 1. In particular, A\; and A, cannot be conjugate over
Q,, so necessarily f, is not irreducible over Q. That is, A, A2 € Q.

Proposition 8.3.8. The non-crystalline semistable 2-dimensional representations V' of Gq,
with smallest Hodge-Tate weight equal to 0 are parameterized as follows: there is a Hodge-
Tate weight r > 0 of the form r = 2m + 1 with m > 0, and V is parameterized up to
isomorphism by a pair (\,c) with X € p™Zy and c € Q,,.

For a given (), ¢), the contravariantly associated filtered (¢, N)-module D = D% (V') given
explicitly by D = Qpe; ® Qpea with N and ¢ as in (8.3.3) and Fi¥ (D) = Q,(ce; + e9)
precisely for 1 < j < 2m + 1. In these cases there is a unique nontrivial subobject D' of D,
namely D' = Q,e1, and ty(D') =0 and tn(D') = m.

In particular, D" is weakly admissible if and only if m = 0, which is to say A\ € Z.
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Accordingly to this parameterization, if m > 0 (i.e., the necessarily distinct Hodge-Tate
weights 0 and 2m + 1 are not consecutive integers) then the semistable representation is
irreducible, whereas if m = 0 then it is necessarily reducible and non-semisimple (as N # 0).

Proof. The condition of 0 being the smallest HodgeTate weight says that Fil’(D) = D and
Fil'(D) # D. We claim Fil'(D) # 0. If Fil'(D) = 0 then the Hodge polygon would be a
straight line, and so by weak admissibility the Newton polygon is the same straight line.
But the monodromy operator always drops the slope by 1 on the isotypic parts, so triviality
of the filtration structure would force the monodromy operator to vanish, contradicting our
non-crystalline hypothesis. Hence, Fill(D) is equal to a line L in D.

There is a unique r > 1 such that Filj(D) = Lforl <j<rand Fil’"H(D) = 0. Let
m = ord,(A\;) = ord,(A2) — 1, so r = ty(D) = ty(D) = 2m + 1. The line ker N is stable
by ¢ and N, and hence it is a subobject of D. Direct analysis of the relation N¢ = pp N
shows that the eigenline ker N must support the eigenvalue of ¢ with the smaller slope, so
tn(ker N) = m. But ty(ker N) > 0, so m > 0 by weak admissibility.

Since N carries the A-eigenline onto the Aj-eigenline (as N # 0) we can choose an eigen-
vector es with ¢(eg) = Ages and define e; = N(es) to get an ordered basis {ej,ex} of D.
This forces Ay = pA; since

pAier = pp(er) = poN(ez) = Np(ea) = AN (e2) = Aser.

To summarize, there is a parameter A € p™Z; satisfying 2m + 1 = r > 1 and a linear
decomposition D = Q,e; @ Qpeq relative to which N and ¢ have matrices

(8.3.3) [N = <8 (1)> = (3 pOA)’

It remains to determine the possibilities for the line L C D satisfying Fil/ (D) = L precisely
for 1 <j<r.

The requirement of (¢, N)-stability implies that the only nontrivial subobject is the line
Qpe1 = ker N. Clearly tx(Qpe1) = ord,(A) = m < 2m~+1 = r. This rules out the possibility
L = Qey, for in such a case we would have t5(Qpe;) = r > ty(Qpe1), contradicting weak
admissibility for D. Thus, L = Q,(ce; + e3) for some uniquely determined ¢ € Q,. (If
we replace the initial choice of ey with a Q-multiple then e; = N(eg) is scaled in the
same way and so ¢ does not change. Thus, ¢ is intrinsic to D.) Since Qpe; # L we have
tr(Qper) = 0 < m = ty(Qper). The weak admissibility condition therefore imposes no
requirements on ¢ and is satisfied in all examples as just described. |

*

Using Lemma 8.3.3 and the contravariant D}, the reducible cases of Proposition 8.3.8 are
non-split extensions of ¢ by ¢(1) for the unramified character ¢ : Gq, — Q,; classified by
A € Z;. In particular, for these reducible cases the larger Hodge-Tate weight appears on the
subobject, exactly as in the crystalline reducible non-semisimple cases in Theorem 8.3.6 (but
now the gap between the weights is necessarily 1). Hence, the unique unramified quotient
character 1 determines the 2-dimensional representation space (though not its non-split
extension structure) up to isomorphism.

Applying the unramified twist by ! brings us to the case A = 1 because D}, is tensor-
compatible, so since D% (Q,) = D7i(Qp) =~ Ko[0] we see that, up to unramified twisting, the

cris
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2-dimensional reducible non-crystalline semistable representations of Gq, are parameterized
by a single parameter ¢ € Q,. Note that to choose a basis of the line D}, (Q,) amounts to

making a choice of Q,-basis of the canonical line Q,(1) = Q,, -t C Beis C Bagr.
Focusing on the case ¢ = 1, we have described all of the lines in the subspace space

H:Slt(GQp’ Qp(1)) := EXt:slt(Qm Q,(1)) C EXt}Qp[GQp}(Qm Q,(1)) = H! (GQp> Q,(1))

of extension classes with underlying semistable representation. There is a distinguished line
whose nonzero elements are the non-split crystalline extension classes of Q, by Q,(1) (all of
which are mutually isomorphic as representation spaces, forgetting the extension structure).
The set of other lines is naturally parameterized by a parameter ¢ as above. The nontrivial
filtration step L is given by Q,(ce; + e2) in the non-crystalline cases (with e; = N(ez)), and
it is given by Q,(e; + e2) in the crystalline non-split case. In each case the pair (e, eq) is
uniquely determined up to a common nonzero scaling factor, and this scalar may be viewed as
a parameter for the nonzero elements of a Q,-line in the space HY (Gq,, Q,(1)) of semistable
extension classes.

By Kummer theory, H'(Gq,, Q,(1)) is 2-dimensional when p > 2. There is also a concrete
description of the vector space structure on this cohomology in terms of the language of
extension classes (using pushouts and pullbacks). Hence, the proved existence of a line of
crystalline classes and a line whose nonzero elements are semistable classes shows (via the
preservation of semistability under subrepresentations, quotients, and direct sums) that when
p > 2 all elements in H'(Gq,, Q,(1)) correspond to semistable representations, and that there
is a distinguished line consisting of the crystalline classes. Here is a vast generalization:

Lemma 8.3.9. For any p-adic field K, each element in H' (G, Q,(1)) corresponds to
a semistable G k-representation and there is a Qp-hyperplane consisting of the crystalline
classes.

Proof. Kummer theory provides a concrete description of HY(G g, Q,(1)) for any p-adic field
K whatsoever: it is the tensor product of Q, against the p-adic completion of K. This is
naturally an extension of Q, by Q, ®z, (1 + mg) ~ K (isomorphism defined via the p-adic
exponential map), where the Q,-hyperplane K parameterizes the cohomology classes arising
from integral units of K. These latter classes V' are 2-dimensional p-adic representations of
Gk that are crystalline: see Example 9.2.8.

Since we have a hyperplane of crystalline classes, to show that in general all elements of
H'(Gk,Qp(1)) are semistable as Galois representations it suffices to exhibit a single non-
crystalline but semistable extension class. The p-adic Tate module of a single Tate curve
over K does the job; see Example 9.2.9. [ |

We can push the Tate curve case further when K = Q. The Tate curve E, for ¢ € Q,; with
lq| < 1 gives rise to a representation V,(E,) := Q, ®z, T,(E) of Gq, that is non-crystalline
but semistable, and V,(E,) has a canonical structure of extension of Q, by Q,(1). Thus,
D} (Vyp(E,)) is classified by some parameter ¢, € Q) in terms of our preceding description of
crystalline classes in H'(Gq,, Q,(1)), and one can ask to compute ¢, explicitly. In order to do
this we have to fix the embedding of By into Bggr (in order to define the filtration structure
on D% (V)k). Such an embedding will depend on a choice of Gk-equivariant logarithm
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A : K° — K extending the usual one on 0= = Eox (1+ mg_). If one does a direct
calculation with By using the contravariant functors, one finds that ¢, = —A(q).

8.4. Exercises.

FEzercise 8.4.1. Consider a linear automorphism 7" : D — D of a finite-dimensional Q,-vector
space. Let K = W(k)[1/p] for a perfect field k with characteristic p > 0.

By extending scalars Frobenius-semilinearly, we get an isocrystal structure on the finite-
dimensional K-vector space K ®q, D via ¢(c® d) = o(c) ® T'(d). The following steps prove
that the slopes of ¢ are exactly the ord,(\)’s, where A ranges through eigenvalues of 7" in
Qp, each occurring with multiplicity equal to its eigenvalue multiplicity for T'.

(1) Prove that in Definition 8.1.5, it is equivalent to apply the Dieudonné-Manin classi-
fication after extending scalars to W(k")[1/p] for any algebraically closed extension
k'/k (not necessarily an algebraic closure). In particular, deduce that it suffices to
treat the case K = Q,.

(2) With K = Q,, use the slope decomposition to reduce the problem to the case when

¢ is isoclinic (i.e., the isocrystal (5;1?1 ®q, D has some pure slope). Let o be the slope.
Show that passing to 7! corresponds to negative the slope, and so reduce to the

case o = 0.
(3) Write @ = s/r in reduced form with r > 1, s > 0. Using Q,(p/") ®q, D and

(p/")=* @ T, with Q,(p*/") linearly disjoint from (5;?1 over Q,, reduce to the case
a=0.

(4) Define an isocrystal (A, ¢) over a p-adic field to be power-bounded if there is a W (k)-
lattice A C A such that the sequence of W (k)-lattices {¢™(A)} for n > 0is “bounded”
in A (in the sense that these lattices are contained in a common W (k)-lattice of A).
Prove that if such a property holds for one ¢-stable lattice then it holds for all of
them (so this concept is well-defined). Then use the Dieudonné-Manin classification
to prove that a (nonzero) power-bounded isocrystal is exactly one for which the slopes
are > 0.

(5) Using that o = 0, deduce that for any Z,-lattice L C D, the family of lattices
{T"(L)} for alln € Z is bounded. By suitable extension of scalars, conclude that all
eigenvalues of 1" are integral units in Qp.

Exercise 8.4.2. The classification in §8.3 is basically one very extensive worked example.
Read through it carefully in order to see how the various aspects of weak admissibility
restrict possibilities on the linear algebra side.

Exercise 8.4.3. In practice it is important to consider p-adic representations “with coef-
ficients”. That is, we need to work with Repp(Gk) for a finite extension F/Q,. We
may view Repp(Gk) as a subcategory of Repq (Gk) (since [F': Q] is finite), and so for
B € {Bur, Bar, Beis, Bst } we define B-admissibility on Repz(G) in terms of the underlying
Q,-linear representation space.

By functoriality, the G'g-equivariant F-action on V endows Dg (V) with an action by F'.
In particular, for the field E := B the E-vector space Dp(V) is naturally a module over
F ®q, E. Consequently, the classification of such V’s (especially for B = {Bg, Beyis}, in
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which case Dp is fully faithful onto a certain subcategory of Vecg) is influenced by the E-
algebra structure of ' ®q, E. It is therefore simplest to analyze things when F' and E are
linearly disjoint over Q, (i.e., F'®q, £ is a field) or when F contains a Galois closure of F
over Q, (in which case F' ®q, E is a product of copies of F' indexed by the Q,-embeddings
E — F). This exercise takes up low-dimensional examples of this situation.

(1) Let F'/Q, be a finite extension linearly disjoint from K over Q, (automatic if K =
Q,). Generalize Example 8.3.2 to classify the objects D in W* MF?}’N corresponding
to semistable representations p : Gxg — F'*. More precisely, use F-linear functoriality
to prove that (i) D is 1-dimensional over F K, := F ®q, Ko with Np = 0 (so D must
be crystalline), (ii) gr'(Dg) # 0 for a unique r, with t5(D) = r[F : Q,], (iii)) D
has pure slope ord,(Nrg,/x,(N))/[F : Qp] = ordrg,(A)/[F : Fy] where ¢(e) = Xe
for A € (FKy)* and an FKy-basis {e} of D (so ty(D) = [Fy : Qp)ordrg, (), with
A unique up to multiplication by (1 ® o)(c)/c for ¢ € (FKy)*). Deduce via weak
admissibility that ordpg,(\) = e(F)r where r is the unique Hodge—Tate weight, and
that such p are precisely the Tate twists of unramified € -valued characters of G.

(2) Let F/Q,beasin (1). Prove that if V' € Repp(G) is semistable then the multiplicity
of each Hodge-Tate weight is a multiple of [F' : Q,]. More specifically, show that
if D € MF2" has an action by F then all gr"(Dg)’s have K-dimension that is a
multiple of [F' : Q,]. (This fails if semistable is relaxed to de Rham, as occurs
already for elliptic curves over K = Q,, that have geometric complex multiplication
by an imaginary quadratic field in which p is inert or ramified!) In particular, if
dimpV = 2 and V does not have a single Hodge-Tate weight, deduce that after a
Tate twist it has Hodge-Tate weights {0, r} for some r > 0 with each weight having
multiplicity [F': Q,].

(3) Now take K = Q,, so (2) applies with any finite extension '//Q,. Let V € Repp(Gq,)
be 2-dimensional and semistable with Hodge-Tate weights {0, r} with » > 0, and let
D = Dy(V) € ™= MF%;V be the corresponding 2-dimensional object over F. Let

fo(X) = X? 4+ aX + b € F[X] be the characteristic polynomial of the F-linear ¢
acting on D, so b # 0. Show that ¢ty (D) = r[F : Q] and ty(D) = [Fp : Qp) ordp(b),
and deduce that r = ordp(b)/e(F) and b € p" 0.

(4) By using F', O, and ordg, adapt the statement and proof of Theorem 8.3.6 so that it
classifies the 2-dimensional F-linear representations of Gq, that are crystalline with
Hodge—Tate weights {0,r} for » > 0 and are not a direct sum of two F*-valued
characters. In particular, show that reducibility of such representations over F is
equivalent to the quadratic characteristic polynomial f,(X) € F[X] of the F-linear
¢ having a root in O}. Beware that if f, has a repeated root A\ € F* then the
condition “r = 2ord,(\)” for F' = Q, is replaced with e(F)r = 2ordp(A), so r may
not be even (if e(F’) is even) and there are nontrivial constraints on ordg(\) when
e(F) > 2.

(5) Can you likewise generalize Proposition 8.3.8 to allow coefficients in any finite exten-
sion F' of Q,7
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9. CRYSTALLINE AND SEMISTABLE PERIOD RINGS

Recall that R = lim Oc,. /(p) is a perfect valuation ring in characteristic p, with each z =

(z,) € R uniquely lifting to a p-power compatible sequence (z(™) in Og,. We constructed
a continuous open Gg-equivariant surjection § : W(R) —» Og,. given by 0([z]) = z(© for
x € R, and more generally 0(rg,ry,...) = Zp"rfln) for rg,r1,--- € R. Inverting p gave a
Gk-equivariant surjection Og : W(R)[1/p] - Ck. By Proposition 4.4.3, ker § = (&) where
& = [p] — p for p € R such that p® = p. The ring BJ; was defined to be the ker q-adic
completion of W(R)[1/p].

One defect of BJ is that the Frobenius automorphism of W(R)[1/p] does not preserve
ker fg, so there is no natural Frobenius endomorphism of Byr = Frac(Bi;) = Biz[l/t].
To remedy this defect we will introduce an auxiliary subring A%, C W(R)[1/p] that is
Frobenius-stable and gives rise to a large subring B.;s € Bgr on which there is a natural
Frobenius endomorphism.

9.1. Construction and properties of Bi;. We let A%, denote the “divided power enve-

lope” of W(R) with respect to ker 6, which in concrete terms means that it is the G g-stable
W(R)-subalgebra

(9.1.1) W(R)[a™ /m!]m>1,0ekers = W(R)[E™/m!] 11

in W(R)[1/p] generated by “divided powers” of all elements of ker 6 (or equivalently by the
divided powers of a single generator £ of ker 6, as (cx)"/n! = ¢" - 2" /n!). (There is a general
abstract notion of divided powers and divided power envelopes [5, §3, App. A] that can be
very useful; we discuss it in §12.1.) Since A%, is a Z-flat domain, if we define

R E 0 n A0
Acris_mA /p A

cris cris

to be the p-adic completion of A%, then A is p-adically separated and complete and the

natural map A%. /p" - A% — Auis/p" - A%, is an isomorphism for all n > 1. In particular,
it follows that Ags is Z,-flat. However, it is not at all evident if Ags is a domain or if
AV — A is injective (i.e., AV, is p-adically separated); these properties will be addressed
shortly.

As a W(R)-module, A, is spanned by the divided powers £™/m! for m € pZ, with £ a
generator of ker §, but beware that A2, is not a free W(R)-module! To understand some
of its properties after p-adic completion, we need to be careful since this ring is rather far
from being noetherian. Unfortunately, verifying basic properties of A..s appears to require
a lot of effort, more so than we can explain in these notes. In Exercise 9.4.1 we give some
experience with this ring. (Some useful techniques for studying A are contained in [19]
and [21].)

Using Exercise 9.4.1 and a somewhat tedious amount of algebra, it can be proved that
there is a way to fill in a continuous top row in a commutative diagram
J

(9.1.2) Acris B}

I

Alis — W(R)[1/p]

cris
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using the p-adic topology on A.is and the topology from Exercise 4.5.3 on Bj;. Such a
continuous map j across the top in (9.1.2) is unique since A%, is dense in A and Bjy is
Hausdorff. Using the uniqueness (or the construction) of j, it follows that j is G g-equivariant.
Rather more effort (which we omit) is required to prove that j is actually injective. (The
existence of a diagram (9.1.2) with continuous j can be deduced from [19, Prop. 4.4.7], but
its injectivity seems difficult to verify via that method.) One consequence of the injectivity
of j and the commutativity of the diagram is that A really is a domain and A%, — A
is indeed injective.
Concretely, the image of A5 in B;{R is the subring of elements

{Z an— |a, € W(R),a, — 0 for the p-adic topology}
n!

n>0

in which the infinite sums are taken with respect to the discretely-valued topology of Bjg;
such sums converge since ¢ lies in the maximal ideal of Bj;. In terms of this description, it
can be proved that the p-adic topology on A is characterized by uniform p-adic smallness
of all a,’s in W(R), but beware that the divided power series expansions ) a,£™/n! for an

element of A.;s are not unique since a,, € W(R) rather than a, € W(k). We summarize our
conclusions:

Proposition 9.1.1. The abstract p-adic completion Agis s a Z,-flat domain, and the com-
posite map Aeis — Big = Ck of W(R)-algebras lands in Ocg,,.

Note that the composite map Auis — Oc, is surjective since W(R) maps onto Og, via
0, and it is trivially continuous relative to p-adic topologies (since p — p). It is natural to
wonder if the Gi-action on A is continuous for the p-adic topology. A moment’s thought
shows that this is really not obvious. Its proof requires a new idea:

Proposition 9.1.2. The Gg-action on Auis is continuous for the p-adic topology. Equiva-
lently, for any r > 1, the G -action on Aeis/(p”) has open stabilizers.

Proof. Although Auis/(p") = A%./(p"), and A%, has a “concrete” description via Exercise
9.4.1, to prove this continuity property it seems necessary to make use of a completely
different description of Ags, or at least of its quotients As/(p”). In [21, 5.2.7] Fontaine gives
an elegant G k-equivariant description of the W(R)-algebra A.;s as a p-adically completed
tensor product, and passing to the quotient modulo p” on this description gives that Ae.s/(p")

is generated over W,.(R) by elements (arising from Ky((¢))) on which Gk acts through y mod

‘s

.

Passing to a finite extension of K to make x mod p" = 1 therefore makes A.;s/(p") be
generated over W,.(R) by G g-invariant elements. Hence, provided that the W, (R)-algebra
Acis/(p7) is a W,.(R/a)-algebra for some open ideal a in R, the discreteness of the G g-action
on R/a will then complete the proof. By using Teichmiiller expansions (via perfectness of
R) it suffices to treat the case r = 1, which is to say that we are reduced to proving that
the map R = W(R)/(p) — Aeis/(p) has nonzero kernel. But for £ = [p] — p € W(R) with
P = p we have & € pAqs, 50 [PP] € pAcyis. Thus, P € ker(R — Auis/(p))- u
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Define the Gk-stable W(R)[1/p]-subalgebra
B+ = Acris[l/p] C B+ .

Cris

Recall the element t = log([e]) = 3,5, (=1)""'([e] =1)"/n € Bgy that is killed by 6, where

e = (e™) € R satisfies ¢ = 1 and () # 1 (so €™ is a primitive p"th root of unity in K
for all n > 0).

Proposition 9.1.3. We have t € Auis and P~ € pAgis, so tP/p! € Auis. In fact, t™/m! €
Acis, and more generally for any a € ker(Aeis — Ocy) we have a™/m! € Aeis, for all
m > 1.

Proof. Choose a generator £ of ker . Since [e] — 1 € ker§ = £ W(R), we have [¢] — 1 = w¢
for some w € W(R). Thus, in Bj; we have

(9.3 =Y EED S e £

n n:
n>1 nz1

with (n — 1)lw™ — 0 in W(R) relative to the p-adic topology. Hence, ¢ € A inside of Bj,

For any a € Aujs (such as a = t), whether or not a?~! € pAg;s only depends on a mod p.
Thus, the infinite sum expression (9.1.3) for ¢ allows us to check whether or not t*=! € pAis
by replacing ¢ with a suitable finite truncation of the sum on the right side of (9.1.3), namely
dropping terms whose coefficient (n — 1)! is divisible by p. Hence, we can restrict to the sum
over 1 < n < p. The terms for 1 < n < p are Aq-multiples of [¢] — 1, and the term for
n=mpis

— 1)1

e a (CE!

sot = ([e]=1)(a+(=1)P"1([e] =1)P~!/p) for some a € Auis. Hence, to prove that P~ € pAgis
it remains to check (and apply twice) that ([g] — 1)P~! € pAqis. But pW(R) C pAqys and

€] =1 =[e — 1] mod pW(R),

so it suffices to show [(¢ — 1)P7] € pAess.

By Example 4.3.4 we have vg(e — 1) = p/(p — 1), so for p € R such that p® = p we have
vr((e — 1)P71) = p = vg(pF). Hence, (¢ — 1)P~! = pPr for some r € R*, so [(e — 1)P7!] is a
W(R)*-multiple of [p]" = (§ + p)? = & mod pAeis with {=[p] —p a generator of ker § in
W(R) But §~ =Dp- (é-p/p) ( - 1)' € pACrlS

Finally, we check that if a € ker(Aeis = Oc,) then a™/m! € Ay for all m > 0. Fix a
choice of m. Since a in Ag;s is a (convergent for the p-adic topology!) sum of terms a,£"/n!
with n > 1 and coefficients a, € W(R) that tend to 0 in W(R) for the p-adic topology,
it suffices to treat the case when this infinite sum is replaced with a finite truncation far
enough out so that the tail lies in p™v Ay with m![pY. In other words, we are reduced to
the case when a is a finite sum of terms a,£"/n! with n > 1. Letting vy (z) = 2V /N! in any
Q-algebra for any N > 1, the binomial theorem says

ml(T+y) = Z% 2)7;(y
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Thus, to show a™/m! € A, when a is a finite sum of terms a,&"/n! with n > 1, it
suffices to treat the case when a is a single such term: a = wé"/n! with w € W(R). But
Ym(wx) = wyy,(z), so finally we are reduced to the case a = £"/n! = ~,(¢) with n > 1,
and we wish to prove that the divided power a™/m! = ~,,(a) lies in A.i. But for all
n,m > 1 we have the universal identity ¥, (vn.(2)) = ChmnYmn(x) in any Q-algebra, with
Crn = (mn)l/(m!(n!)™). Since C,, € Z [5, 3.1}, taking x = & gives y,(a) € Aes for
a="7,(§) and all m > 1, as required. [ |

Definition 9.1.4. The crystalline period ring Beis for K is the Gg-stable W(R)[1/p]-
subalgebra B[, [1/t] = Aeis[1/t] inside of Biz[1/t] = Bar. (Since t*~! € pAgss, inverting ¢

makes p become a unit, which is why Ag;s[1/t] = BE [1/t])
Observe that the definitions of B, and Bg;s (with their Frobenius and Galois structures)

only depend on the valued field Cx and not on K, just like for Bj; and Bggr. (The action
of Gk is encoded via functoriality in Cg through its identification with the isometric au-
tomorphism group of Cg.) The same holds for the embeddings of Bf.. and B into Bgg.
Since W(k) € W(R) C Aeyis, we have Ky = W(E)[1/p] € Bes, s0 Koy € BSE C BSX = K.

We claim that BSX = K. This is immediate from the following non-obvious crucial fact.

cris

Theorem 9.1.5. The natural Gk -equivariant map K @k, Beis — Bar 1S injective, and if we
giwe K @, Beis the subspace filtration then the induced map between the associated graded
algebras is an isomorphism.

Proof. Unfortuntately, the proof of injectivity in [21, §4.1.2-4.1.3] is incomplete when e(K) >
1 since the generator & of ker # does not generate the kernel of the associated &k-algebra
map

Ox @wry W(R) — Oc,.

To handle this, a proof can be given in the spirit of the construction of the map j :
Auis — Bz in (9.1.2) using delicate direct calculations resting on [19, Prop. 4.7]. The
computations are too tedious to be included here. As for the isomorphism property on
associated graded objects, since t € B, and Ags map onto Og,., we get the isomorphism
result since gr(Byr) = Bpr has its graded components of dimension 1 over gr’(Bgr) =
Ck). [ |

Since Bgr is a field, it follows from Theorem 9.1.5 that K ®p, Frac(Beuis) — Bar is
injective. Hence, we likewise deduce that Frac(Bes)“%X = Ky. This proves part of:

Proposition 9.1.6. The domain Be;s is (Q,, Gk )-regular.

Proof. It remains to show that if b € B is nonzero and Qb is Gk-stable then b € B

Since t € B, if the nonzero b has exact filtration degree i in Bqg then by replacing b with
t'b we can arrange that b € B, and b is not in the maximal ideal. Let n : Gx — QX
be the abstract character on the line Q,b. Thus, the residue class bin Ck spans a Q,-line

in Cg with Gk-action by 7. This forces n to be continuous and hence Z;-valued, with
Cr(n 1) # 0. By Theorem 2.2.7 we conclude that n(Ix) is finite. But Ix = G, and
replacing K with K" does not affect the formation of B.;s, so again using Theorem 2.2.7
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(for the absence of transcendental invariants, applied over a finite extension of K splitting
n), we deduce that the element b € C is algebraic over K" = W (k)[1/p] C Bii.
Such an element b in the residue field Ck of the K'-algebra Bl uniquely lifts to an

element § € Bj, that is algebraic over Kun by Hensel’s Lemma for the complete discrete
valuation ring Bj, with residue characteristic 0, so b — 3 € Fil'(BJz). The Gg-action on
B restricted to 3 is given by the Q, -valued 1 due to the uniqueness of 3 as a lifting of

b that is algebraic over Kun, Hence, b — 3 spans a Gg-stable Q,-line in Fil'(Bgr)™ with
character n if b — 3 # 0. If there is such a Q,-line then its nonzero elements live in some
exact filtration degree r > 1 and so passing to the quotient by the next filtered piece would
give a nonzero element in Cg(r) on which G acts through n. In other words, Cg(x" - n)
has a nonzero G'k-invariant element. But by Theorem 2.2.7 this forces x"n(Ix) to be finite,
which is a contradiction since n(Ik) is finite and » > 0. We conclude that b — 5 = 0, so
b=(is algebraic over Kun, -

Thus, L := K{*(b) C Beis is a finite extension of K™, and is maximal unramified subfield

Lo must be I/(?l. By applying Theorem 9.1.5 over the ground field L (in the role of K in that
theorem) we get that the map of rings L ®p, Buis — Bar is injective. Hence the subring

L®p,Lis a domain (as Bgg is a domain), so L = Ly and therefore b € L] = Kém cB:,. N

cris’

By the general formalism in §5, we have a functor D : Repr(G k) — Vecg, defined by
V'~ (Beris ®q, V)GK , and there is a natural descending exhaustive and separated filtration
on K ®p, Deis(V) via its natural injection into Dgg (V') (using Theorem 9.1.5). By Exercise
7.4.10, we may conclude that D, is naturally valued in MF?{ once we construct an injec-
tive G g-equivariant endomorphism of B that extends the Frobenius automorphism ¢ of
W(R)[1/p]. We now prepare to construct such an endomorphism. (See Theorem 9.1.8.)

Fix p € R such that p® = p, so for £ = [p] — p € ker § we have that B, = Aeis[1/t] with
Aeis defined to be the p-adic completion of A2, = W(R)[™/m!],,>1. We now examine how
¢r on W(R)[1/p] acts on the subring A%, . The key point is:

Lemma 9.1.7. The W(R)-subalgebra A%, C W(R)[1/p| is ¢r-stable.
Proof. We compute ¢r(§) = [p"] —p = [p]P —p = (§+p)? —p = & + pw for some w € W(R).

Thus,

or(§) =p- (w+ (p— 1! (£/p)),
s0 Pp(E™) = p™(w+ (p— 1) - (&7/ph))™ for all m > 1. But p™/m! € Z, for all m > 1, so
dr(€™/m!) € A%, for all m > 1. u

The endomorphism of A%, induced by ¢r on W(R)[1/p] extends uniquely to a continuous
endomorphism of the p-adic completion A.j, and hence an endomorphism ¢ of Bl. =

Auis[1/p] that extends the Frobenius automorphism ¢g of the subring W(R)[1/p]. We claim
that for ¢t € Auis (inside of BJy) we have ¢(t) = pt with p € (BL,.)*, so ¢ uniquely extends
to an endomorphism of Beis = BI [1/t] = Bens. Intuitively the reason that ¢(t) = pt is
that ¢ = log([¢]) and ¢r([e]) = [e7] = [e]P with log([e]?) = plog([e]) = pt, but this is merely
a plausibility argument and not a proof because (i) there is no Frobenius on the ring Bgr in
which ¢ was initially defined by a max-adic completion process, and (ii) ¢ on A5 was defined
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by passing to an abstract p-adic completion on A%, that was only embedded into Bjy after

its construction (and only after this step was it shown that ¢ lies in Ag.s, as opposed to
intrinsically constructing ¢ in the abstract p-adic completion Acys)-

To rigorously prove that ¢(t) = pt, first recall that to prove t € A.is we showed that the
summation »_ o (=1)"*([e] — 1)"/n initially defining ¢ in Bjy actually made sense as a
convergent sum in the p-adic topology of A.;s, with such a sum thereby defining the element
of Auis that “is” ¢ via the embedding A — B;{R. Thus, we may use p-adic continuity to
compute

_ n Pl —
¢(t> _ Z(_l)n—i—l ((b([g];l 1) _ Z(_1>n+1([5 ]n 1)
n>1 n>1
since ¢ on Agis extends the usual Frobenius map on W(R). Thus, ¢(t) = log([e?]) after all,
and we have already seen below Example 4.5.3 that this is equal to pt. Rather more difficult
is the following fundamental fact:

Theorem 9.1.8. The Frobenius endomorphism ¢ : Aqis — Aeis 18 injective. In particular,
the induced Frobenius endomorphism of Bes = Aais[1/t] is injective.

Proof. Unfortunately, the proof was omitted from [21]. We do not know of a published
reference. A proof will be included in the final version of these notes. [ |

We conclude that D : RepQP(G k) — Vecg, is naturally promoted to a functor valued

in MF (fo and we shall always view it as such. Beware that the Frobenius operator on B
does not preserve the subspace filtration acquired via

Bcris — K ®K0 Bcris — BdR-

The basic reason for this incompatibility is that ker 6 is not stable by the Frobenius. More
specifically, if we choose p € R such that pl®) = p then ¢ = [p] — p is killed by @ whereas
(&) = [pP] — p is not (B(¢(€)) = pP —p # 0), so € € Fil' (Beuys) and ¢(€) & Fil' (Beyis)-

A p-adic representation of Gk is crystalline if it is Bs-admissible, and the full subcategory
of these is denoted Repgips(G k). By 85 and Proposition 9.1.6, this full subcategory is stable
under duality and tensor products. The same filtration arguments as used earlier for Dggr

cris

show that as an MF?{-Valued functor, the faithful covariant functor D.;s on Repg, (Gk) is

exact and naturally commutes with the formation of tensor products and duals (in MF{. and
Repq, (Gk))-

Proposition 9.1.9. IfV € Repgi:(GK) then the natural map jy : K ®kyDeris(V) — Dar(V)
in Filg is an isomorphism. In particular, crystalline representations are de Rham.

Moreover, the Bis-linear Frobenius-compatible G i -equivariant crystalline comparison iso-
morphism

(07 Bcris ®Ko Dcris(v) =~ Bcris ®Qp V
satisfies the property that ax is a filtered isomorphism.

Before we give the proof, we mention a nice application. Using the identifications

DdR(VV) = Home[GK}(Va BdR)> K ®k, DcriS(Vv) = Home[GK](V; K ®k, Bcri5)>
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the isomorphism property for jyv says that if V is a crystalline p-adic representation of
Gk then every Q,[Gkl-linear map V — Bgg lands in the K[Gk|-subalgebra K ®p, Beis-
Loosely speaking, the “de Rham periods” of a crystalline representation are the same as its
“crystalline periods” up to an extension of scalars by Ky — K.

Proof. The natural map jy is a subobject inclusion in Filg by definition of the filtration
structure on Deis(V) g, so the problem is one of comparing K-dimensions. The crystalline
condition says dimg, Deis(V) = dimq, (V'), and since dimg Dgqr (V) < dimg, V' we must have
equality, so V is de Rham. To verify that the K-linear inverse ai_(l is filtration-compatible too,
or in other words that the filtration-compatible a is a filtered isomorphism, it is equivalent
to show that gr(ak) is an isomorphism. Since jy is an isomorphism and gr(K ®p, Beis) =
gr(Bgr) = But by Theorem 9.1.5, the method of proof of Proposition 6.3.7 adapts to show
that gr(ag) is identified with the Hodge-Tate comparison isomorphism for V. u

Give B.;is the subspace filtration from K ®g, Beis C Bgg; 1.e., define

Fil' Bais = Beris N Fil' Byg.
Beware that (since there is no Frobenius on Bgr) this is not ¢-stable! We require a funda-
mental property of the filtration on Bs.

Theorem 9.1.10. The space (Fil” Bui)?=' = {b € Fil"(Buis) | ¢(b) = b} of ¢-invariant
elements in the Oth filtered piece of Beyis s equal to Q,.

Proof. This is difficult; see [21, 5.3.7]. |

This theorem underlies the key to the full faithfulness properties for D..;s. The reason
for the importance of Theorem 9.1.10 is that it shows how to extract Q, out of B;s using
only its “linear structures”: the Gg-action, the Frobenius operator, and the filtration. To
see how useful this is, we finally come to the key point of the story: we can recover V from
Deiis(V') when V' is crystalline!

Indeed, consider the crystalline comparison isomorphism

(914) (07 Bcris ®K0 Dcris(v) ~ Bcris ®Qp V

for Ve Repgips(G k). We have seen that not only is « only Bgs-linear, G g-equivariant, and
Frobenius-compatible, but ak is a filtered isomorphism too. Hence, by intersecting with the
Oth filtered parts after scalar extension to K we get a G g-equivariant Ky-linear isomorphism

Fﬂo(Bcris ®K0 Dcris(v)) = Fﬂo(BCYiS) ®QP V

that is compatible with the Frobenius actions on both sides (within the ambient B.;s-modules
as in (9.1.4)). Passing to ¢-fixed parts therefore gives a Q,[Gk]-linear isomorphism

(9.1.5) Fil’(Beris @1y Deris (V)7 = V.
In other words, if we define the covariant functor
Viris : MF}. — Q,[Gx]-mod

by D ~ Fil’(Beais ®x, D)?=" then V =~ Viis(Des(V)) for crystalline representations V' of
Gk. Hence, modulo the issue that V(D) may not be finite-dimensional over Q, with
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continuous G g-action for arbitrary D in MF?{, the functor V., provides an inverse to D s
(or rather, Dy restricted to RepC“S(G x))! Most importantly, we have almost shown:

Proposition 9.1.11. The exact tensor-functor D Repms(G ) — MF?( is fully faithful,
with inverse on its essential image given by V.. The same holds for the contravariant D}
using the contravariant functor Vi (D) = Hompy (D, Beyis)-

Cris

cris

Proof. The full faithfulness needs further discussion. Suppose that V" and V' are crystalline p-
adic representations of G and let D = D¢i5(V) and D’ = Dei5(V’) in MF?(. IfT:D — D
is a map in MFf{ then via the crystalline comparison isomorphisms as in (9.1.4) for V
and V') the Bgislinear extension 1 @ T : Beis ®k, D' — Buis @k, D of T is identified
vaith a Bgis-linear, G- and Frobenius-compatible, and filtration-compatible isomorphism
T: Bcris ®Qp V/ = Bcris ®Qp V.

Explicitly, T = Qeris(V) 0 T 0 areris (V') 1. The map T respects the formation of the ¢-fixed
part in filtration degree 0, which is to say (by (9.1.5)) that this Bys-linear isomorphism
must carry V' into V by a Gg-equivariant map. Hence, T is the B.is-scalar extension
of some map V' — V in Repq (Gk), so by functoriality of the crystalline comparison

isomorphism we see that this map V' — V between Galois representations induces the given
map T : Dgis(V') = D' — D = Dgs(V). This gives full faithfulness as desired. [ |

We conclude with a basic calculation.

Ezample 9.1.12. Let’s calculate D% (Q,(1)) = Homq,q,](Qp(7), Bais). Given any Q,[Gk]-
linear map Q,(r) — Beyis, if we multiply it by ¢7" then we get a Q,[Gk]-linear map Q, —
Beis. In other words, D = D%, (Q,(r)) = BSE -+ = Kyt". This has Frobenius action
o(ct”) = o(c)(pt)” = po(c)t”, and the unique filtration jump for D happens in degree r
(i.e., gr"(Dk) # 0). In other words, D} (Q,(r)) is the Tate twist (K;[0])(r) in the sense of
Definition 8.3.1.

Let’s push this further and compute Vi (D} (Qp(1))) = Vi ((Ko[0])(r)). This consists
of Ko-linear maps T : Ky — Fil"(Be;s) that satisfy ¢(T'(c)) = T(p"o(c)) for all ¢ € Ky, or
in other words o(c) - ¢(T'(1)) = p"o(c)T'(1) for all ¢ € Ky. This says ¢(7'(1)) = p"T'(1) with
T(1) € Fil" Beys, and if we write T(1) = bt” with b € Fil”(Bess) (as we may since t € BY,))
then the condition on b is exactly b € (Fil® Buis)?~! = Q,. Hence, Vi, (D% (Q,p(1))) = Qput”
is the canonical copy of Q,(r) inside of B.s. This illustrates in a special (but important!)

case of the general fact that VJ, is “inverse” to D}, restricted to crystalline representations.

The next step in the development of D, is to show that it takes values in the full sub-
category of weakly admissible filtered ¢-modules over K. Rather than prove this result now,
we shall first digress to develop the theory of another (Q,, G )-regular period ring By con-
taining Bes whose associated theory of admissible representations (to be called semistable)
generalizes the theory of crystalline representations. The desired weak admissibility property
for Deis(V) with crystalline V' will be a special case of a more general weak admissibility
property that we will prove for Dy (V) = (By ®q, V)“% € MF (f{’N for semistable V.

9.2. Construction of Bg. The period ring By will be a canonical extension ring of B
endowed with compatible Galois and Frobenius structures, as well as a filtration on K ® g, Bst,
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but there will not be a canonical injective map By — Bgr as Bis-algebras with G g-action.
Instead, such a map will depend on a certain non-canonical choices, but the image of the
map will be independent of the choices. (Don’t forget: the map to this canonical image will
not be independent of the choices!).

To motivate what is to be done, we recall that crystalline representations are meant to
capture (among other things) the p-adic étale cohomology of smooth proper K-schemes X
with good reduction. But what is X has “bad reduction”? By the techniques of cohomo-
logical descent, coupled with deJong’s alterations theorem, it turns out that the worst case
(up to finite extension of K) is essentially that of “semistable reduction”. Loosely speaking,
this is the case in which X = 2% where 2" is a proper flat 0k-scheme whose special fiber
is reduced and has singularities that look étale-locally like transverse intersections of hyper-
planes in an affine space. The most basic example of such a singularity is the local equation
uv = q over O with ¢ a nonzero element of the maximal ideal of O (so it has reduction
uv = 0). The primordial example in which this singularity arise is the regular proper model
for the (algebraization of the) Tate curve E, = G*/¢% over K. Thus, before we proceed we
first consider this example.

Example 9.2.1. The p-adic Tate module representation 7,,(E,) has a Z,-basis given choices
of e = ((,») € R and ¢ € R satisfying ¥ = ¢ € K*, and the G-action relative to this

basis is
X Mg
0 1

where ¢(q)/q = "9 for a continuous 1-cocycle 1z : G — Z, relative to the y-action. (This

formula for ¢(q)/q rests crucially on the fact that ¢ € K*; if merely ¢ € K™ then the formula
is more complicated.)

To discover a copy of V,(FE,) inside of Bj;, we proceed as follows. The element ¢ =
log([e]) € Buis has G -action via x, just like the first basis vector of T,(E,) chosen above.
Since ¢(q) = "9, by applying Teichmiiller lifts to this and imagining we can then take
logarithms, we see that to match the Gk-action on the second basis vector of T),(E,) we
should define an element “log([q])” in Bjg, as then the identities

9(t) = x(g)t, g(logla]) = nz(g)t + log([a])
should hold. This would define a copy of V,(E,) inside of BJ;.

The most optimistic idea for defining a period ring By € Bgr containing the “periods” of
the p-adic étale cohomology of all smooth proper K-schemes X with semistable reduction is
that we should need all crystalline periods (i.e., Buis C Byi) and the periods of the simplest
semistable singularities of all, namely the ones arising from Tate curves. By thinking in
terms of isogenies of Tate curves, it seems plausible that adjoining the periods of a single
Tate curve should then be enough to get everything. That is, By should be generated over
Beis the hypothetical element log([q]) as in Example 9.2.1 for a single ¢. This will turn out
to work!

Concretely, if we choose § € mp — {0} such that ¢ := ¢°) € Ok (rather than just ¢ € O¢,
or ¢ € Ox) then 0 < |g| < 1 and By will be identified with Bes[X] where G acts as usual
on Bis and by the formula g(X) = X + log([ez(g9)]) on X, where e5(g) = ¢g(¢)/q € R* is
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a compatible sequence of (possibly non-primitive) p™th roots of unity (so log([ez(g)]) lies in
the canonical Z,(1) in Agis).

We prefer to first give an abstract construction of By unrelated to Bqr and to then relate
it more concretely to Bqr by means of various choices.

Now fix a choice of ¢ in the maximal ideal of & and pick ¢ € mg — {0} such that ¢g© = q.
Since 0([q]) = ¢® = ¢ # 1, so [g] is not a l-unit in BJ; (in contrast with [¢]), to make
sense of log([q]) in Bj; we need to generalize the Bi-valued logarithms as constructed in
the discussion following Exercise 4.5.3. We will now use the p-adic topology of As (which
has no good analogue on Bjy) to carry this out.

Lemma 9.2.2. For x € 1 +mg, if n > 0 then the element

cris

w € W(R)[1/p] C Auis[1/p] = B

lies in Aes, and it tends to O for the p-adic topology of Aeis as n — oo. In particular, the
infinite sum

logcris([x]) = Z(_1>n+l ’ w < B:;is
n>1
makes sense for all x € 1+ mg.
Moreover, x +— log.;s([x]) is Gk-equivariant homomorphism and

G(108eris ([7])) = 108eris ([#7]) = plogeis([2])
for allx € 1 +mp.

Proof. Since 6([z] — 1) = 2 — 1 ¢ Mg, , for some N > 0 we have 0(([z] — HY) =
() —1)N € pOc,.. But § : W(R) — Oc, is surjective with kernel generated by some &, so
([z] = 1)N = pwy + Ewy with wy, wy € W(R). Both elements p and € in A, admit divided
powers in Agis (since p"/n! € Z, for all n > 1), so ([z] — 1) /4!l € Aus for all j > 0.

Now consider ([z] —1)"/n for n > 1. Writing n = N¢, + r, with 0 < r, < N,

([2] =1)" _ gn! re (] —1)No
M (g
n n !
with the final factor in Ag.s. Hence, for the membership in A (for sufficiently large n) and
the p-adic convergence to 0 as n — oo we just need that ¢,!/n — 0 in Q, as n — co. But
for any j > 1 we have
. —
S oy () > =~ log, )
where we use base-p logarithm, so ord,(g,!) grows at linear rate in n (since ¢, = |n/N])
whereas ord,(n) < log,(n). This gives the required decay toward 0.
The Gg-equivariance, homomorphism property, and Frobenius-compatibility for = —

log..is([z]) are deduced by passage to the limit on finite sum approximations (due to how the
Frobenius on B, = Auis[1/p] was defined). [ |

cris

Define the G'g-equivariant “logarithm” homorphism

AR =k x(14+mg)— BE

cris
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by requiring it to be trivial on %~ (inspired by the case of finite k, since BZ, is torsion-free as
a Z-module) and to be x +— log,;([z]) on 1-units. From the deﬁmtlons d(A(r)) = A\(rP) =
pA(r) for all » € R*. Since B[, is a Q-algebra, A induces a canonical G k-equivariant
Q-algebra map

Symgq(R*) — B
where Symq(I') for an abelian group I' means the symmetric algebra Symg(I'q) on the
associated Q-vector space I'q = Q ®z I

Consider the Gi-equivariant exact sequence of abelian groups
(9.2.1) 1 — R* — Frac(R)* &£ Q — 1;

this is an analogue of 1 — 6"% N T Q — 1. This exact sequence implies that
Symg(Frac(R)*) is a 1-variable polynomial ring over Symg(R2*), where the choice of variable
rests on a choice of y € Frac(R)* with vg(y) # 0 (e.g., y € mg — {0}). Indeed, if we apply
Q®z(-) to (9.2.1) then we get a short exact sequence of Q-vector spaces, and rather generally

0—-W =W —-=W"=0

is a short exact sequence of vector spaces over a field then the symmetric algebra Sym(W)
is a polynomial ring over Sym(W’) in variables given by a lift to W of a basis of W” (since
symmetric algebras of vector spaces are polynomial algebras in a basis).

Definition 9.2.3. As a B.;s-algebra with G g-action,
BS—: = Sme(Frac(R)X) ®Sme(RX) B+

cris

and the canonical Gg-equivariant homomorphism Frac(R)* — B via h — h®1 is denoted
M. Define By, = BJ[1/t] with its evident G'g-action.
Non-canonically, B =~ B:;ls[ | and By =~ Bgis|X] upon choosing y € Frac(R)* with

y & R* (and setting X = A\, (y)).

Remark 9.2.4. The pair (B, \%,) is an initial object in the category of pairs (S, Ag) consisting
of a B, -algebra S equipped with a Gx-equivariant homomorphism A\g : Frac(R)* — S
extending A.

It is natural to wonder if there is ring Ay analogous to A that is an integral counterpart
to By (in the sense that p is not a unit in Ay and Ag[1/t] = By). In work on comparison
theorems for p-adic cohomology one needs integral versions of By, but we will not address

the issue here.

Roughly speaking, B is obtained from B[, by universally adjoining logy for elements
of Frac(R)* not in R*. As with the de Rham and crystalline period rings, the rings BX
and By (equipped with their Frobenius and Galois structures, as well as their Bs-algebra
structure) only depend on Ck and not on K.

Since ¢ on B satisfies ¢(t) = pt and ¢(\(z)) = pA(x) for € R*, we canonically extend
the injective Frobenius ¢ on B, to a (visibly injective) Frobenius ¢ on BJ and By via

the requirement ¢(\j;(z)) = pAk(x) for all z € Frac(R)*. (In terms of the non-canonical
presentations B, [X] and Bes[X] for B and B, this amounts to the single condition

p(X) = pX.)



CMI SUMMER SCHOOL NOTES ON p-ADIC HODGE THEORY (PRELIMINARY VERSION) 139

The ring By admits an additional crucial structure, a monodromy operator N whose
interaction with ¢ satisfies N¢ = poN. We now construct this N. Loosely speaking, the
idea is to define N = d/dX on B} = B [X], but to proceed canonically we need to
formulate the definition in a slightly different manner.

Observe that for a choice of yo € mz — {0} with vy := vr(ye) € QZy, A (yo)A(R) is
the set of A\ (y)’s for y € v;'(vg). Thus, if we set X = A\ (yo) to identify B with B, _[X]
then changing yo to you for u € R* changes X to X + A(u) with A\(u) € (BL,)*. Hence,
the operator d/dX on Bf = B, [X] is invariant under replacing yo with you and so only

depends on vy = vg(yo) rather than on yo. We define
N = Vo - d/dX

(which we will soon see is independent of vy, so vy = 1 is useful for doing computations).
This operator N is a B, -linear derivation of Bf = B, [X] with kernel B}, . We uniquely
extend N to a Bgis-linear derivaton of By = BZ[1/t] = Beys[X] that is also denoted by N,
and BY=Y = B. The identity N¢ = p¢N holds because we can check it on X = A (y)
(using that ¢(A\f(yo)) = pAL(yo)). Similarly, we see that N on By is Gg-equivariant and

only depends on Cg rather than on K.

Remark 9.2.5. If we change vy to v) = cvy for ¢ = m/n € QZ, (with m,n € Z*) then
correspondingly the element yy € mr—{0} can be replaced with any y, € mr—{0} satisfying
y's = yJu for some u € R*. Choose such a yj. Clearly n\f(y)) = mAf(vo) + A(u), so
X = M (yo) is replaced with X’ = ¢X + A(u)/n, where A\(u)/n € (BL,)* (since u € R*).
Thus, v} - d/dX’ = cvg - d/d(cX) = vod/dX, so N is independent of !

Another point of view that may be used is that to each ¢ € mr — {0} there is associated a
Beis-linear derivation Nz = d/d X5 for Xz = M\ (), and N := vg(q) - Ny is independent of g.

To define a filtration on K ®, Bs; extending the one on K ® g, Beis, we seek to construct
a G-equivariant Bes-algebra embedding By, — Bgr carrying BY into Bj;. The image of
such a map will be canonical but the actual map will depend on a choice of G g-equivariant
homomorphism

logz : K - K

extending the usual log on 1-units and equal to the trivial map on Teichmiiller lifts k. We
write log : ﬁ% — K~ to denote the canonical log map on units that kills %~ and is the usual
logarithm on 1-units. This latter canonical logarithm map is G g-equivariant.

To construct such a map logz on FX, pick any ¢ € mx — {0} and any ¢ € K for which
we want to define logr(q) = c.

Lemma 9.2.6. There is a unique homomorphism logz : K - K extending log on ﬁ% and
satisfying logg(q) = c. It is also Gk-equivariant, and if log'? corresponds to the condition
logie(q) = ¢ € K then loge(x) — logg(x) = (ordy(x)/ ord,(q))(¢ —¢) € K for all x € K"
In particular, if ¢,d € Ky then the associated logarithms have difference valued in K.

The standard convention is to take ¢ = p (and Iwasawa’s convention is to also take ¢ = 0).

Proof. Once uniqueness and existence are proved then G g-equivariance follows, as ¢,c €
K are fixed by Gx and log on units is Gg-equivariant. For a general x € K™ we have
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ord,(z) = (m/n) ord,(g) for some m,n € Z with n # 0, so 2" /¢™ € 0. We therefore know
what log(z™/¢™) means, and so if logz is to be homomorphism extending log and satisfying
logz(q) = ¢ then the only choice is to define

log(z™/q™) + mc
logze(z) = 2B/ e

n
This proves uniqueness, and also exhibits the desired variation under change in ¢, but we
have to show this formula actually works.

If we scale m and n by a common nonzero integer then proposed formula does not change,
so it is a well-posed definition (i.e., it only depends on m and n through the ratio m/n).

To check the homomorphism property we simply observe that if z/ € K = with ord,(2') =
(m’/n’) ord,(q) then

ord,(zz") = (m/n +m'/n’)ord,(q) = ((mn' 4+ m/'n)/(nn')) ord,(q).
From this the homomorphism property is a simple calculation. |

To define a Gg-equivariant By, -algebra map B} — Bj;, we need to construct a Gg-

equivariant homomorphism Frac(R)* — Bjp whose restriction to R* is the G g-equivariant
homomorphism Auis @ @ — 10g..([7]) € Aeis from Lemma 9.2.2. The construction of such a
homomorphism uses two ingredients.

First, the Gx-equivariant multiplicative Teichmiiller map R — {0} — (Bjy)* defined
by r +— [r] uniquely extends to a multiplicative map Frac(R)* — (Bjr)* that we denote
y — [y]. We similarly define Frac(R)* — Cj extending the map R — {0} — O¢, — {0}
defined by y + y© (and we denote the extended map with the same notation). Both of
these extended homomorphisms are G g-equivariant.

Second, each coset in Frac(R)* /R* is represented by some y € Frac(R)* such that y© €
FX, and even y© ¢ Q: (to make later considerations depend only on Cg and not on K
or K). Using the canonical embedding K < Bj; we can therefore make sense of the ratio
[y]/y® € (Bf,)* for all y € Frac(R)* such that y© € K", and this has reduction in C
that is equal to 1.

In other words, [y]/y® is a 1-unit in the complete discrete valuation ring Bl for all
y € Frac(R)* such that y© € K", so the usual Bi-valued logarithm log,z on 1-units of
B, makes sense to evaluate on [y]/y®). Hence,

Ay) = loggr ([y]/y'?) +logz(y”) € Bi;

makes sense for the group of all y € Frac(R)* such that y© € fx, or even just y(© € Q:

(which is sufficient for our needs and avoids dependence on K), and \ is a G g-equivariant
homomorphism. In order that this A “work” to extend A.;s to Frac(R)*, it remains to check
the consistency with A on R*:

Lemma 9.2.7. Ify € R* and y©) € G then log.;,([y]) = logar ([y]/y?) + logz(y?).

Proof. By using the decomposition of y into a product of a Teichmiiller lift and a 1-unit in
R*, it suffices to separately treat the case y € E* and y € 1+mp. In the first case y(© = [y],
s0 log.is([y]) = 0 = logw(y®) by definition for such y and [y]/y® = 1, yielding the desired
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equality. In the second case log,([y]) is defined using the procedure of Lemma 9.2.2, and
we need to prove

(9.2.2) logar ([W]/y”) = loge([y]) — logz(y™)

for y € 1 + mpg such that the 1-unit y© € ﬁé? is algebraic over K.

Both sides of (9.2.2) convert products in y into sums, so since the identity takes place
in a torsion-free abelian group it suffices to check the result after replacing y with " for
sufficiently large N. Hence, we can assume y© € 1 + PO, SO y© € 1+ pOg for some
finite extension K'/K. Hence, logg(y¥) = 3 o, (=1)""(y® — 1)"/n in K’ as a p-adically
convergent sum, the tail of which takes place in the W(%')-finite & and so can be viewed
as a p-adically convergent sum in O @ww) Aais © K' @y Bhy, © Big (with k'/k the
residue field of K'). By construction loges([y]) = 2,5, (=1)"([y] — 1)"/n in Aes[1/p] as
a p-adically convergent sum, the tail of which takes place in Agjs.

Since — logz(y”) = logw=((1/y)®), a p-adic approximation argument with finite sums
gives that in (O @w(w) Aeis)[1/p] we have

0) _ 1\n
o ([4]) — logre(y®) = 3 (—yrt - AW T =D

n
n>1

where this sum formed in (Ox’ @wi) Aeris)[1/p] has tail whose terms lie in Ogr @w iy Aeris
and is p-adically convergent in here. In BJ; we have

0) _ 1\n
long([y]/y(O)) = Z(_l)"ﬂw _ Z(_l)n—l—l ([y(1/y)

n n
n>1 nz=l

© — 1)

relative to the discretely-valued topology of Bij.

We may and do rename K’ as K. Consider v € Ok @w ) W(R) satisfying « = 1 mod p
and O(u) =1 (with 6 : O @wr) W(R) — Oc,. induced by the usual W(k)-algebra map 6);
a basic example is u = (1/y)®) @ [y] for y as above. It suffices to prove that for any such u,
the convergent sum

Y (=) u—1)"/n

n>1
formed in the p-adic topology of Ox @wr W(R) has image in Bj; that is equal to the
“same” sum formed relative to the discretely-valued topology of Bi. Equivalently, if v €

Ok @wk) W(R) satisfies 0(v) = 0 then we claim that the p-adically convergent sum

Z(_l)“+1(p"/n)v" € Ok @wr) W(R)

n>1
has image in Bj; that is the “same” sum formed relative to the discretely-valued topology
of Bii.
In other words, for any ¢ > 1 we claim that if N is sufficiently large (depending on )
then the p-adic tail 37 -y (=1)"*!(p"/n)v"™ in Ok @wy W(R) has image in Bgy that lies in
Fil'(Bl;). Provided that N > 4, this image lies in v'Bj;, C Fil'(Bjg) since v € Fil'(Biy)
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(because O(v) = 0 and the K-algebra map Bj; — Cg is a K-algebra map due to how we
defined the K-algebra structure on Bj; using Hensel’s Lemma). |

Ezxample 9.2.8. Choose a unit u € & that is not a root of unity, and pick a sequence of
p-power compatible roots of u, which is to say v € R* with u© = u. We get the element
log..is([u]) € BE.., and thanks to the formula log([g?]) = at for all a € Z,, (as we rigorously

proved after Exercise 4.5.3) we can compute that for g € G,

9(1080i5([u])) = 108015 (9([u])) = 108eis([9(w) /u]) + 108 s ([u]) = Nu(9)t + 10 ([u])

where g(u)/u = €™ for the 1-cocycle n, : Gx — Z, *relative to the y-action on Z,)
arising from the G k-action on the chosen p-power roots of u (as in computations of p-power
Kummer theory!).

We claim that the elements ¢t = log([¢]) and log,,s([u]) in Beys are Qy-linearly independent.
Indeed, if log.,([u]) = at for some a € Q, then we would have g(at) = n,(g)t + at, so
a(x(g) — 1) = nu(g). This would force the chosen system of compatible p-power roots of u
to all lie in the cyclotomic extension K (pu,~) that is abelian over K, so all p-power roots of
u would lie in this abelian extension. Since u was assumed to not be a root of unity, this is
impossible by Exercise 9.4.2 below.

The Q,-linear independence ensures that ¢ and log,;([u]) span a 2-dimension subspace
V. € Byis on which the Gg-action is given by the matrix form

(5 %)

This is exactly the extension class in H'(Gg, Q,(1)) arising from u, and its isomorphism
class as an abstract Q,[G x]-module only depends on w.

In addition to the Q,[Gk]-linear injection of V,, into B.;s that we have just constructed,
there is a nonzero element of Homq, ¢, (Vu, Beris) = Di(Vi) with a 1-dimensional kernel,
namely the projection of V,, into its quotient Q, that in turn naturally sits inside of Bys.
Hence, we have constructed two elements of D} . (V,) that are visibly linearly independent
over Ky. The general inequality dimg, D ;(V,) < 2 is therefore an equality, so such V,, are

crystalline.

Ezxample 9.2.9. We can now interpret Example 9.2.1 in terms of By, somewhat extending
the theme of Example 9.2.8, as follows. Choose ¢ € mp — {0} with ¢ := ¢® € Ok (so
0 < |g] < 1). We get an isomorphism Bj ~ BT, [X] with X = A\}(q), and the B}, -algebra
map B — Bj carries X to the element log([q]) := logar([q]/q) + logz(q) € Biz whose
image in the residue field Cg is logi(¢) (which might vanish). Note that this definition of
log([g]) as we vary q is a G g-equivariant multiplicative map on the set of elements [g] with
?](0) cmg — {O}

Choose a Z,-basis € of Z,(1), so (using that ¢ € K*) we have g(g) = "9 for a unique
ng(g) € Z,. Letting t = log([¢]), the G k-action is given on X by ¢(X) = X + n3(g)t because
in Bj; we have (by Gg-equivariance of loggg)

g(1log([d])) = log([9(@)]) = log([g][e"*']) = log([@]) + log([e"*)])
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and (as we saw after Exercise 4.5.3) log([e?]) = alog([¢]) for all a € Z,. Hence, Example
9.2.1 is now rigorously completed: for the Tate curve E, we have explicitly realized the
2-dimensional p-adic representation V,(E,) inside of By. Moreover, the same linear inde-
pendent argument as in Example 9.2.8 shows that D (V,(E,)) is at least 2-dimensional. In
Proposition 9.2.11 we will show that By is (Q,, Gk )-regular, whence by the formalism of §5
it follows that D (V,(E,)) is exactly 2-dimensional and thus V,(E,) is By-admissible (i.e.,
V,(E,) is a “semistable” representation).

Now we are ready to impose a filtration on K ®g, By, depending on a choice of logz, and
to make this work out nicely we impose the requirement

logz(p) € Ko.

The reason for this condition is that if we change the choice of logg(p) € Ky then by
Lemma 9.2.6 the image of log([q]) changes in Bj; by additive translation by some element
of Ko C BZ,. Hence, the B}, -subalgebra image of B, in Bj; is independent of the choice
of logg(p) € Ky, so we have a canonical image for the map B — Bj; (and likewise after
inverting ¢) even though the actual map is not canonical.

Theorem 9.2.10. Choosing logz=(p) € Ky, the resulting Gk -equivariant K Q, B, -algebra

map K Qg, Bl — B;{R is injective. In particular, K ®p, Byt injects into Bar as a K[G k|-
algebra, so the inclusion Ky C BSK 1S an equality.

Proof. We just sketch the idea, giving a reference for the details. Upon choosing ¢ € mp —
{0} with ¢ := ¢© € Ok, the problem is to prove that X := logx([q]/q) + logz(q) is
transcendental over Frac(B.. ) = Frac(Be;s) inside of Bgr. It suffices to treat a single choice
of ¢, and to show that logyr([q]/q) is transcendental over Frac(B.s) (since logr(q) € K).
We choose ¢ = p, so £ = [p] — p generates ker § C W(R) and

togar([7]/p) = 3 (~1)r1 - &5

np"
n>1 p

in the discrete valuation topology of Bjp (with ¢ lying in the maximal ideal). It must be
shown that this element of Bgr is not algebraic over Frac(Beis). The proof of this is given
in [21, §4.3.2-§4.3.3).

The key to the proof of such non-algebraicity is to show that this sum does not lie in
Frac(Beis), which rests on a delicate analysis of p-adic series and especially on proving that
the (non-noetherian) subring of By, consisting of sums }~, - w,(&§/p)" with w, € W(R) is p-
adically separated. Once this is shown, if logyg ([7]/p) is not transcendental over Frac(Beys)
then its minimal polynomial has degree d > 2 and then applying the G g-action to this

minimal polynomial it follows from the equality BdGPf = Ky C Bgis and the condition d > 2
that one gets a contradiction. |

Theorem 9.2.10 gives an exhaustive and separated filtration to K ®g, Bst via a Beyis-
algebra injection in Bgg, but this injection rests on a choice of logz(p) € K, and so likewise
the filtration on Dg (V) g depends on this choice. We will now use Iwasawa’s convention
logz(p) = 0 to eliminate non-canonicity in the filtration structure. Moreover, with this
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choice the embedding of By into Bgr is not only intrinsic but depends only on Cg rather
than on K.

Proposition 9.2.11. The ring By is (Q,, Gk )-regular.

Proof. It remains to prove that if b € By is nonzero and Qb is G-stable then b € B. It

is harmless for this purpose to replace K with I?‘;l, which is to say that k is algebraically
closed. We shall use the concrete description By = Beys[X| with g(X) = X + n(g)t where
t = log([¢]) is a fixed choice and the continuous n : G — Z, is defined by g(7) = 7”9 for
a fixed 7 € R such that 7 = p. Let ¢ : Gx — Q, be the character on the line Q,b in
Byt = Beis|X]. We may write b = by + - -+ + b, X" with b; € Bes and b, # 0. Our goal is to
show r = 0, as then b = by spans a Gg-stable Q,-line in B,,;, whence b € B, = By due to
the known (Q,, Gk )-regularity of Beys.
Consider the identity

Y(g)b=g(b) = g(bo) + g(b1)(X +n(g)t) + -+ g(b,)(X +n(g)t)"

in By for ¢ € Gk. Comparing top-degree terms in X gives ¢(g)b, = g(b,), so b, spans a
G g-stable Q,-line in Bs. The character 1 is continuous, by the same trick with t%-scaling
and projection into Ck as in the proof of (Q,, Gk)-regularity of B in Proposition 9.1.6.
Hence, v is a continuous character that appears in By, so it is a crystalline character of
Gk. As such ¢ is Hodge-Tate, so it has some Hodge-Tate weight n € Z. Thus, x "¢ is
a crystalline character with Hodge-Tate weight 0. The proof of Proposition 8.3.4 relied on
properties of B and D that have been established in the preceding developments, and
so its conclusion may be applied: xy ™" is a Tate twist of an unramified character of G.
But Gg = Ik since now k is algebraically closed, and so the vanishing of the Hodge—Tate
weight means that there is no Tate twist at all: y "¢ = 1.

We may now replace b with t="b (as t € B_.,.) to reduce to the case n =0, s0 ¢ = 1. In
particular, g(b,) = ¥(g)b, = b, for all g € Gk, so b, € (BX,)°% = K;. Assuming r > 0,
we seek a contradiction. Consideration of terms in X-degree r — 1 in our formula for ¥ (g)b
gives

br—1 = ¥(9)br—1 = g(by—1) + g(br)rn(g)t = g(by—1) + byrn(g)t.
Thus, g(by—1) — b,—1 = —rbn(g)t with ¢ := —rb, € K and any g € Gx. Hence,

glbr_1/c) = br1/c=n(g)t = g(X) — X,

so X —b_1/c € BSGtK = Ky C Bguis. But b,_1 € Bugis and X € Bgis, S0 we have a
contradiction. [

We may now apply the formalism of §5 to the functor Dy : Repr(G k) — Vecg, defined

by
Dy(V) = (By ©q, V)°*,

so dimg, D (V) < dimg, (V) for all V' and equality holds precisely when V' is By-admissible.
A semistable p-adic representation of G is one that is Bg-admissible; the full subcategory
of these is denoted Repgp(G k). By using the additional structures on By (including the
subspace filtration on K ®p, By from Bgr via Theorem 9.2.10), we see that Dy is naturally
valued in MF$".
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Much like in our analysis of D, we also see that the faithful functor
Dy : Rep%p(GK) — MF?{’N

is an exact functor compatible with tensor products and duals (endowed with their natural
filtrations). Likewise, the By-linear G g-equivariant Frobenius-compatible and N-compatible
semistable comparison isomorphism

(67 Bst ®K0 Dst(v) = BSt ®Qp V

is seen to be an isomorphism with respect to the filtration structures after scalar extension
to K (i.e., ax and aj' are filtration-compatible).

Lemma 9.2.12. Crystalline representations are semistable, and D.;s(V) = Dg (V) in MF?{N
for all V. If V is semistable and Dg (V') has vanishing monodromy operator then V' is crys-
talline.

Proof. Since BY= = B, we see that Dy (V)V=0 = D (V) in MF% for every V €
Repq, (Gk). In particular, if V' is crystalline then for dimension reasons the Ky-linear inclu-

sion Dgis(V) € Dg (V) is an isomorphism in MF?(’N. Thus, crystalline representations are
semistable.

If V' is semistable but Dy (V') has vanishing monodromy operator then Dq,s(V') = Dg (V)
and this has Ky-dimension dimgq, (V'), so V is crystalline. |

It follows from this lemma that by working in the generality of semistable representations
we can keep track of crystalline objects simply by observing whether or not /N vanishes.

Lemma 9.2.13. Semistable representations are de Rham, and if V' is semistable then the
natural injective map K Qp, Dgt (V) — Dar(V') is an isomorphism in Fily.

Proof. 1f V is semistable then the natural injective map K ®p, Dgst(V') — Dqr(V') has source
with K-dimension dimgq, (V') that is an upper bound on the K-dimension of the target, so it
is a K-linear isomorphism. In particular, V' is de Rham. By the definition of the filtration
structure on K ®g, By), this natural injective map is always a subobject inclusion in Fil,
so when it is an isomorphism as K-vector spaces it must be an isomorphism in Filg. |

To summarize:
crystalline = semistable = de Rham = Hodge-Tate.

As with crystalline representations in Proposition 9.1.11, there is a full faithfulness result for
Dy on semistable representations and we can write down an inverse functor on the essential
image of Dy on semistable representations, as follows. The equality Fil’(By)V=0¢=! =
Fil°(Beis)*~' = Q, implies that functor

Vi : MFSY — Q,[Gk]-mod
defined by
(9.2.3V(D) = Fil®(By ®k, D)N=00=!
(9.2.4) = ker(6(D) : (B ®x, D)= — (Bar @k Dr)/ Fil’(Bar @k Di))
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provides an inverse to the functor Dy on semistable representations: there is a natural
Q,[GkJ-linear isomorphism V' o~ Vi (Dg(V)) for all V' € Repfﬁp(GK). (If we use the con-
travariant functor D} (V') = Homq,c,](V; Bst) then the inverse is given by the contravariant
functor V;(D) = Hompy ¢ n(D, Bgt).) In particular, as in the crystalline case in Proposition
9.1.11, we deduce via the comparison isomorphism:

Proposition 9.2.14. The functor Dy : Repgp(GK) — MFQY is fully faithful, with quasi-
wmverse on its essential image given by V.

Note also that if D € MF2" with Np = 0 (i.e., M € MF%) then V(D) = V(D)
because BY=" = Bes.

9.3. Finer properties of crystalline and semistable representations. Now that we
have constructed B, and B and worked out some basic properties of their respective as-
sociated functors D and Dy (especially full faithfulness from Repgi:(G k) and Repgp(G K)
into the respective target categories), we want to address some deeper properties. The most
important property concerns an intrinsic characterization of the essential images of these
fully faithful functors.

We first dispose of a more elementary fact: insensitivity to inertial restriction. Unlike
the de Rham case (see Proposition 6.3.8), if K'/K is a finite ramified extension it is not
true that V' € Repq, (G) is crystalline (resp. semistable) if its G x-restriction is so. This
was already apparent in Proposition 8.3.4 (which rests on properties of D that have now
been established), where we found that a 1-dimensional crystalline representation is exactly
a Tate twist of an unramified character; this leaves no room for twisting by a finite-order
ramified character without ruining the crystalline property.

Likewise, if K’/K is a finite ramified Galois extension then the induction Indg;(Qp) =
Q,[Gal(K'/K)] has trivial Ggs-action (so it is crystalline as a Gg/-representation) but
has ramified G g-action and hence is non-crystalline by Corollary 9.3.2 below. Thus, to
prove good behavior for the crystalline property with respect to the restriction functor
Repq, (Gk) — Repq,(Gx) we must restrict our attention to the case when K'/K satis-

fies e(K'/K) = 1. In other words, the essential case is K’ = K (which is to say, inertial
restriction):

Proposition 9.3.1. Let K’ = K. The natural map K{ @k, Da.x(V) — Dgx/(V) in
MF(f{fV is an isomorphism for all V € Repr(GK), and likewise for the functor Deys i that
15 valued in MFf(,. In particular, V' is semistable as a G g-representation if and only if it s
semistable as a representation of G = I, and likewise for the crystalline property.

Proof. The crystalline case will follow from the semistable case since Deis(V) = Dy (V)V=0
for all V' € Repq,(Gk). The map K ®k, Dst.x(V) — Ds (V) is visibly a morphism in

MF(f{fv, so it suffices to show that its scalar extension to K’ is an isomorphism in Filg.. This
goes via completed unramified descent as in the proof of Proposition 6.3.8. [

Corollary 9.3.2. If p: Gx — GL(V) is a p-adic representation with open kernel then p is
semistable if and only if it is crystalline if and only if it is unramified.
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Also, a continuous character n : G — Q if semistable if and only if it is crystalline if
and only if it is a Tate twist of an unramified character.

Proof. By Proposition 9.3.1, we may replace K with K" so that k is algebraically closed.
The problem for the first part of the corollary is then to show that if p is semistable with
ker p open in Gk then p is a trivial action on V. Let L/K be the finite Galois extension
corresponding to ker p, so V' is a representation space for Gal(L/K) and it is semistable as
a Gg-representation space. Our goal is to prove that VG/E) = 1/,

Since k is algebraically closed we have Ly = K,. Hence, BSGtL = Lo = Ky, so

Dst,K(V) _ (Dst,L(V))Gal(L/K) _ (BgL ®Qp V)Gal(L/K) _ (KO ®Qp V)Gal(L/K)
— KO ®Q vGal(L/K)'

But dimg, Dg x(V) = dimg, V' by semistability of V' as a Gg-representation, whence
dimq, VK = dimg, V by Ko-dimension reasons. This gives V = VElL/K) a5 desired.

For the claim concerning semistable characters 7, since semistable representations are
Hodge-Tate there is a Hodge-Tate weight n € Z for n. It is harmless to twist by the
crystalline (hence semistable) representation Q,(—n), so we may assume that 7 has Hodge—
Tate weight 0. Thus, by Theorem 2.2.7 we see that n(Gk) is finite (as Gx = Ix). That is,
kern is open. By the first part of the corollary, it follows that n = 1. [ |

Lemma 9.3.3. Let k be an algebraically closed field with characteristic p > 0. The map
W(k)* — W(k)* defined by w — o(w)/w is surjective, where o is the Frobenius automor-
phism of W(k).

Proof. We shall argue by successive approximation. More specifically, we will prove that if
u € W(k)* with u = 1 mod p" (for n > 0) then we can find w € W(k)* with w = 1 mod p”
such that o(w)/w = u. By a simple limit process with infinite products, it suffices to find
w such that o(w)/w = v mod p"™. In case n = 0 this says that the map z — 277! is a
surjection from k> to itself, which holds since k is algebraically closed.

For n > 1 we can write u = 1 + p™u,, for some u,, € W(k), and the hypothetical w must
have the form w = 1 + p™w,, with w, € W(k) such that o(w,)/w, = 1 + p"u, mod p"*'.
But o(w)/w = 1 + p"(o(w,) — w,) mod p"*! for any w = 1 + p"w,, so we just need that
u, mod p € k has the form 2P — x for some z € k. This holds since k is algebraically
closed. |

Now we come to a key theorem that explains the interest in weak admissibility.

Theorem 9.3.4. If V € Repg (Gk) then Dy (V) € MF2N is weakly admissible. In partic-
ular, if V is crystalline then D.;s(V') € MF?{ 1s weakly admissible.

Proof. Since weak admissibility is insensitive to the scalar extension Ky — I?(‘)E, by Propo-
sition 9.3.1 we may assume that k is algebraically closed. We let D = Dy (V) and let
D’ C D be a subobject. We need to prove that ty (D) < ty(D') with equality in case
D' = D. We may assume D’ # 0, so d = dim D’ > 0. As a first step, we use determinant
arguments to reduce to the case d = 1 (so D’ can be described in concrete terms). Note
that A% (V) is semistable (being a quotient of V%), so A% (D) is naturally identified with
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Dy (AY (V). Also, det D' = A% (D') is naturally a 1-dimensional subobject of A% (D). Since
ti(D') = ty(det D') and tx(D') = ty(det D'), we may therefore pass to A% (V) to reduce to
the case dim D’ = 1.

In case D' = D we have dimV =1, so V = Q,(n) for some n € Z (as k is algebraically
closed). In this case we see with the help of t™" € BJ,. that ty(D) = ty(D) = —n (as
we are using the covariant Fontaine functors Dy and Dg;s). Thus, it remains to show that
in general ty(D’) < tn(D'). Let € € D' be a Ky-basis, so ¢(¢') = A’ for some A € K
and tx(D’) = ord,(A). Also, N(¢/) = 0 since Npr = Np|p is a nilpotent operator on a
I-dimensional space. Let s = ty(D’), so ¢ € Fil’(Bar ®q, V) = Fil*(B4r) ®q, V but
¢ ¢ Fil'™ (Bar) ®q, V.

Pick a Q-basis {v1,...,v,} of V, so the inclusion D’ C D = (Bg ®q, V)% gives a
unique expansion € = > b; ® v; for b; € By. The equality Ae’ = ¢(e') = > o(b;) ® v; gives
o(b;) = Ab; for all ¢, and the vanishing of N(¢') = > N(b;) ® v; gives N(b;) = 0 for all 4. In
particular, b; € BY=" = B, for all i. Since ¢’ € Fil*(Bar)®q, V but ¢’ ¢ FilsH(BdR)@QpV,
we conclude that b; € Fil*(Bes) for all i but by, & Fil*™ (Beys) for some iy. Focusing on
b;,, it suffices to show generally that if b € B lies in Fil®(Bes) but not in Fil**(Bes) (s0
b#0) and ¢(b) = Ab for A € K then s < ord,(\).

We assume to the contrary, so s > ord,(A) + 1. Let n = ord,(\), so b € Fil*(Bes) C
Fil"*!(Bes). To get a contradiction, it suffices to show that the only b € Fil"™ (Bys) such
that ¢(b) = Ab with n = ord,(A\) is b = 0. We may replace b with b/t" to reduce to the
case n = 0. Hence, b € Fil'(Byys) and ¢(b) = ub with « € W(k)*. But k is algebraically
closed, so u = o(u')/u’ for some v € W(k)* (Lemma 9.3.3). Thus, b/u’ € Fil'(Be)?=".
But Fil’(Bgs)?=" = Q, by Theorem 9.1.10, and this meets Fil'(Bs) in 0. [ |

In Example 6.3.9 we saw that Dgg is not fully faithful, due to the de Rham property being
insensitive to replacing Gk with G- for a finite extension K'/K. This is best explained by a
fundamental result independently due to Berger and André—Kedlaya—Mebkhout that relates
p-adic differential equations with de Rham representations to prove Fontaine’s potential
semistability conjecture:

Theorem 9.3.5. A p-adic representation V' of Gk is de Rham if and only if it it potentially
semistable in the sense that V' is a semistable G -representation for some finite extension

K'/K.

This theorem implies that although we cannot invert the functor Dggr, the gap between
de Rham representations and semistable representations amounts to an insensitivity to finite
extensions of K. However, keep in mind that Dyg (V') contains too little information even
to recover V' as a G -representation for some unknown finite extension of K’ as we see by
considering V' = Q,(n) for an unramified n : Gx — Q) with infinite image (in which case
Dar (V) = K[0] = Dar(Qp))-

A fundamental result of Colmez and Fontaine [14, Thm. A] is that the fully faithful
and exact tensor functor Dy : Repgp(G K) — MngN’W'a' is an equivalence. That is, every
weakly admissible filtered (¢, N)-module D over K is isomorphic as such to Dg (V) for a
semistable p-adic representation V' of Gi. In principle we know what V" has to be: necessarily
V ~ V(D). But it is not a priori obvious that for every weakly admissible D we at least



CMI SUMMER SCHOOL NOTES ON p-ADIC HODGE THEORY (PRELIMINARY VERSION) 149

have that V(D) € Reps(sp(G &) (in particular, it is not obvious if V(D) is finite-dimensional
with continuous G g-action), nor is it obvious that D ~ Dy (Vi (D)) for weakly admissible
D. A nice preliminary observation of Colmez and Fontaine that will be proved below is
that Vi (D) is always in Repg (Gk) for any weakly admissible D € MF?", and that as
long as dimq, Vit(D) > dimg, (D) it is automatic that D ~ Dy (Vi (D)). In other words,
the real problem is to prove that Vi (D) is “big” (and in particular nonzero when D # 0).
Kisin’s alternative proof [30, Prop. 2.1.5] of the Colmez—Fontaine theorem via integral p-adic
Hodge theory also uses this bigness criterion for a weakly admissible module to arise from a
semistable representation; we will sketch Kisin’s proof in §11 (especially §11.3).

In the remainder of this section, we take up the proof that Vi(D) is always in Repg (Gr)
for any weakly admissible D (in particular, it is in Repq (Gk)), and we also prove the
Colmez-Fontaine lemma that dimgq, V(D) < dimg, D for all weakly admissible D, with
equality if and only if D ~ Dy (Vi (D)) in MF (f{’N. By considering D for which Np = 0 the
analogous conclusions for D.s, Viris, and crystalline representations are obtained, so we will
say nothing further about the crystalline case.

To get started, we first consider an arbitrary D € MF ?{’N without a weak admissibility
hypothesis. The Q,[Gk]-module Vi (D) might be infinite-dimensional, but we claim that
if it is finite-dimensional then its natural Gg-action is automatically continuous for the
natural topology as such a vector space. More generally, we claim that any G i-stable finite-
dimensional Q,-subspace of V(D) has continuous G k-action (i.e., lies in Repq, (Gk)). Since
the rings By and B,s do not have a useful natural topology, this continuity claim requires
some thought. By definition Vi (D) C By ®q, D with the Gg-action doing nothing to D,
so it suffices to prove:

Proposition 9.3.6. For any n > 1, any Q,|Gk]-submodule V of B with finite Q,-
dimension has continuous Gk -action relative to its natural p-adic topology.

Proof. Consider the usual non-canonical presentation By =~ Bes[X]| (resting on a choice of
¢ € mp — {0} with ¢ € Ok). The Bujs-submodule Beis[X].q of polynomials with degree
below a given bound d > 1 is Gg-stable because g(X) = X +n(g)t for a suitable continuous
n : Gx — Z, depending on a choice of ¢ = log([¢]). The finite-dimensional Q,-subspace
V' C BZ is contained in the finite free Bgs-submodule B[ X]%, for some d > 1, but
beware that Bes[X]2, is not G'k-equivariantly identified with Bgfils via the basis of vectors
in standard monomials when d > 1.

Since Bers = Aais[1/t] and dimg, V' is finite, the t-denominators needed to describe V'
are bounded: for some M > 0 we have V C Q, - t‘MAcriS[X]Zd. The action by Gk on t
is through the Z;-valued continuous x, so we can replace V' with tMV for some M > 0 to
arrange that V' is generated over Q, by the Gk-stable

A = V ﬂ ACrlS[X:IZd

This Z,-submodule of V' contains no infinitely p-divisible elements because A is p-adically
separated, so it follows that A must be finitely generated over Z, and hence is a Z,-lattice in

V. Thus, it suffices to prove that the Gg-action on A is continuous for the p-adic topology
of A.



150 OLIVIER BRINON AND BRIAN CONRAD

Let A, = AN (p" Auis[X]2%y), so p"A C A, C A and A, is Gg-stable. Since Agys is p-adically
separated we have N,.A, = 0, so by a result of Chevalley [35, Exer. 8.7] it follows that the
A,’s cut out the p-adic topology of A. Thus, our problem is reduced to showing that for each
r > 1 the Gk-action on each finite quotient A/A, is discrete, which is to say that points
have open stabilizers. Fix such an r. The finite quotient A/A, is naturally contained in
(Aecris/ (P")[ X2, (with g(X) = X 4+ n(g)t for g € Gk), so we are reduced to proving that if
an element of (Aeis/(p"))[X]%, has a finite G -orbit then it has an open stabilizer. We will
show that all orbits are finite with open stabilizer. By projection to factors of this direct
sum of truncated polynomial modules, we can assume n = 1.

We may replace K with the finite Galois extension corresponding to ker(n mod p"), which
is to say that we can assume that the additive character n mod p” vanishes. Hence, the G k-
action on X mod p" has now been eliminated, so we can project to monomial coefficients
in each separate X-degree less than d, which is to say that we are reduced to proving that
every G-orbit in A.s/(p") has an open stabilizer (and hence is finite) for each r > 1. This
is Proposition 9.1.2. [ |

Now we turn to the task of analyzing Vi (D) when D is weakly admissible. The case
dimg, D = 1 will be analyzed first, both as a warm-up to the general case and because it is
used in the treatment of the general case.

Lemma 9.3.7. If D is an arbitrary filtered (¢, N)-module over K with dimg,(D) = 1 then
V(D) is 1-dimensional when D is weakly admissible (i.e., ty (D) = ty(D)), it vanishes when
tu(D) < tn(D), and it is infinite-dimensional when ty (D) > tn(D).

Proof. We have D = Kyd with ¢(d) = Ad for some A € K. The monodromy operator
vanishes on D since it is nilpotent and dimg, D = 1. By definition t5(D) = ord,(\) € Z
and Fil'"(P)(Dy) = Dy, Fil'"™*(Dy) = 0. Since dimg, (D) = 1, we have that D is
weakly admissible if and only if t5(D) = ty(D). We wish to relate the (possibly infinite)
Q,-dimension of V(D) to the nature of the difference ty (D) — ty (D).

Let us compute V(D) in general, using the Ky-basis {d} of D. Elements of this space are
elements © € By ®g, D such that ¢(z) =z, N(z) =0, and

z € Fil'(By @k, D) = Fil"P)(By) @k, D.

In particular, x € Beis Qk, D, so x = b ® d for a unique b € Fil_tH(D)(Bcris) such that
d(b) = b/X. We can write X\ = p™u for m = ty(D) and u € O, = W(k)*. Letting
Y = t'1(P)h € B, the conditions are that b € Fil°(Bg;s) with (V) = ptaP)=tn (D) (3 /).
By Lemma 9.3.3, we may choose w € W(k)* such that o(w)/w = u. Replace ¥ with
b = wb', so V(D) as a Qp,-vector space is identified the set of elements b” € Fil%( Beys)
such that ¢(b") = pta#P)=tn(P)y" Thus, in the weakly admissible case (i.e., tz(D) = ty(D))
the condition on b” says exactly that b € Fil’(Bg)?=! = Q,, so dim V(D) = 1 in such
cases. In general, if r := ty (D) — ty(D) then ¢(b"/t") = b"/t", so if r < 0 then V'/t" €
Fil™"(Bes) C Fil'(Buis) is a ¢-invariant vector and thus vanishes (as the only ¢-invariant
elements of Fil’(Be;s) are elements of Q,, none of which lie in Fil' (Beis) except for the
element 0). Hence, 0" vanishes when r < 0. The remaining case is when r > 0, in which case
b"/t" € Fil ™" (Beis) 18 a ¢-invariant vector, and the space of these is infinite-dimensional due
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to the so-called fundamental exact sequence
(9.3.1) 0 — Qp — Fil 7" (Beis)”™" — Fil " (Bar)/Bjr — 0

that is valid for all » > 0. A proof of this exactness can be found in [14, Prop. 1.3(v)]; the
essential content of its proof is already needed to handle the case r = 0 (i.e., to prove that
FﬂO(BcriS)¢:1 = Qp) .

Definition 9.3.8. An object D € MF?{’N is admissible if D ~ Dy (V) for some V €
Repst(GK)‘

By Theorem 9.3.4, admissible objects in MF%’N are weakly admissible. The following
preliminary result generalizing Lemma 9.3.7 is a small piece of the proof of the general result
(due originally to Colmez and Fontaine) that weakly admissible filtered (¢, N)-modules are
always admissible.

Proposition 9.3.9 (Colmez Fontaine). Let D € MFY be weakly admissible. The vector
space V(D) is finite-dimensional over Q, with dimension at most dimg, (D), and it is
semistable as a p-adic representation of Gr. Moreover, D' := Dg(Vy(D)) is naturally
identified with a suboject of D, and D is admissible if and only if dimq, (Vit(D)) = dimg, (D),
or equivalently D' = D.

In such cases, the natural map

§(D) : (Bg ®x, D)N="?=! — (Bar @k Di)/ Fil’(Bar @k D)

from (9.2.3) is surjective. *

Proof. Let Cy denote the fraction field of the domain By and let V' = V(D). We do not
yet know if V' has finite Q,-dimension. The key idea is to work with vector spaces over Cy
rather than just with modules over By. Within the Cg-vector space Cy ® g, D of dimension
s := dimg, D, the Q,-subspace V generates a Cy-subspace V' of some dimension r < s. It
is trivial to handle the case r = 0 (i.e., Vit(D) = 0), so we now may and do assume r > 0.
(Strictly speaking, in what follows the case r = 0 goes through without a problem.)

The action by G on Cy ®p, D preserves the Cy-subspace V. View V' as a Cy-valued
point of a Grassmannian variety G, (D) over K, parameterizing r-dimensional subspaces
of D. This point is invariant by G and so it descends to a C$*-valued point. By the
(Qyp, G )-regularity of B, CS% = BS¥ = K,, so V' corresponds to a Ky-valued point of
G, (D), which is to say that V' = Cy ®, D’ for a Ky-subspace D' C D with dimension
r. (Rather than appealing to the general theory of Grassmannians one can do explicit basis
calculations by imitating how Grassmannians are constructed in order to see this descent
from Cy down to Ky by more direct means.) Thus,

V CV'N(By ®k, D) = Bs @K, D".

The Ky-subspace D" in D is stable by ¢ and N since this holds after scalar extension from
Ky to Cy. Using the subspace filtration on D} C Dy, we thereby make D’ into a filtered

2Should include proof of converse: if Vi (D) is finite-dimensional then it is semistable using [14, Prop. 4.5],
and if also §(D) is surjective then D is weakly admissible (using proof of [14, Prop. 5.7]).
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(¢, N)-module over K that is a subobject of D. Since V = V(D) = Fil’(By, ®x, D)?="V=0
and V C By Qk, D', we have V. C Vi (D') C V(D) =V, s0 V = Vi (D).

By definition, V"’ is spanned over Cy by V', so we can find a Cyg-basis {vq,...,v,} for V'
consisting of elements of V; the v;’s are a maximal Cg-linearly independent subset of V.
Thus, the map Ag (V) — Az, (V') carries v1 A+ - - Av, to a nonzero element, and Ag, (V') is
a Cg-subspace of Cg ®x, A, (D'), so v1 A -+ A v, has nonzero image in Cg; ®p, A"(D'). In
other words, if we choose a Ky-basis {ds, ...,d,} of D’ and write v; = ). b;;d; with b;; € By
(recall V' = Vi (D') C By ®k, D') then b := det(b;;) € By lies in Cg; that is, b # 0 in By.
Thus, the element

(9.3.2) ViAo Av,=bdy A+ ANd, € By @, N (D)

lies in the Oth filtered piece and is killed by N and fixed by ¢ since each v; lies in V' = Vi (D").
Hence, we have produced a nonzero element of Vi (A"(D')). But A"(D’) is a 1-dimensional
filtered (¢, N)-module over K. Since we have exhibited a nonzero element of Vi (A"(D')), by
Lemma 9.3.7 we cannot have ty(A"(D')) < ty(A"(D’)), or in other words the case ty(D’) <
tn(D') cannot occur. The weak admissibility hypothesis on D implies ty(D’) < ty(D') for
the subobject D' C D, so ty(D'") = ty(D’). Hence, D" is weakly admissible (as D is) and
Vie(A"(D')) must be exactly 1-dimensional over Q,.

Any r-fold wedge product of elements of V' = V(D) = Vi (D’) is naturally an element
of Vi(A"(D')), and so is a unique Q,-multiple of vy A --- A v,. But we can view this wedge
product as being formed over By within By ®k, A"(D’), so if an element v € V C V' is
arbitrary and we write (as we may) v = > ¢;v; with unique ¢; € Cy then

Ul/\"'/\Ui—l/\v/\vi—l—l/\"'/\vr:Ci(vl/\"'/\vr)-

Hence, ¢; € Q, for all ¢. This shows that the v;’s span V' over Q,, so they are a basis for V'
(as they are even linearly independent over Cy). In other words, V' has finite Q,-dimension
that is equal to r = dimg, (D) < dimg, (D), and V must then have continuous G -action
by Proposition 9.3.6.

The identity (9.3.2) now implies that Gk acts on b through a Q, -valued character, so
Q,b C By is a Gk-stable line. Hence, by (Q,, Gk)-regularity of By we must have that
b € B. It therefore follows from (9.3.2) that the Q,-basis {vy,..., v} for V- = Vi (D') is
also a Bg-basis of By ®q, D', so the By-linear map By ®q, V — By ®g, D' induced by the
identification V' = V(D') is actually a linear isomorphism. By G g-compatibility, we deduce
that as Ky-vector spaces

(9.3.3) Dy (V) ~ (By ®k, D/)GK — ng ®x, D' =D

This shows that D (V) has Ko-dimension equal to dimg,(D’) = r = dimg,(V), so V is a
semistable p-adic representation of G with dimension r < dimg, (D’).

The identification Dy (V) = D’ in (9.3.3) visibly respects the Frobenius and monodromy
operators, and carries Fil/(Dg (V) into Fil/ (D) for all j (since the By-linear isomorphism
By ®q, V ~ By ®k, D' carries the jth filtered piece into the jth filtered piece for all j,
due to the identification V = Vi (D') within Fil’(By, ®x, D')). But D’ is weakly admissible,
and Dg (V) is also weakly admissible since we have proved that Dy carries any semistable
p-adic representation to a weakly admissible filtered (¢, N)-module! Any morphism of weakly
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admissible filtered (¢, N)-modules that is a linear isomorphism on Ky-vector spaces is auto-
matically an isomorphism in MF?{’N (i.e., it is compatible with filtrations in both directions),
by Theorem 8.2.11, so D’ ~ Dy (V) as filtered (¢, N)-modules. We conclude that Dy (V) is
naturally a subobject of D, with Ky-dimension dimq, (V). Hence, dimq, (V') = dimg, (D) if
and only if the subobject Dy (V) C D has full K(-dimension, in which case D is admissible
(arising from V). Conversely, if D is admissible, say D ~ D (V}) for a semistable p-adic
representation Vi of G, then V' = V(D) =~ Vi (Dg (V1)) = V4 (the final isomorphism due
to the semistability of V7). Hence, in such cases dimq, (V) = dimq, (V1) = dimg, (D).

Finally, we suppose we are in the case that D is admissible, so D = Dg (V') for some
semistable p-adic representation V' of Gk, and we wish to prove that 0(D) is surjective.
Using the deRham and semistable comparison morphisms for V', the map §(D) is identified
with the natural map

BY™""' ®q, V — (Bar/Bi) ®q, V.

Hence, the surjectivity is reduced to the surjectivity of the natural map B’Z' — Bur /Bix-

cris

This latter surjectivity follows by passage to the direct limit over r — oo on (9.3.1). |

We conclude by recording an interesting observation made by Colmez and Fontaine [14,
Cor. 4.7]. Suppose that in the abelian category of weakly admissible filtered (¢, N)-modules,
the object D is a simple object. (In particular, D # 0.) If V := V4(D) # 0 then the
above proof realizes Dy (V') as a nonzero subobject of D, in which case it must equal D by

simplicity. Hence, a weakly admissible D that is simple in MF (f{’N is admissible if and only
if V(D) # 0!

9.4. Exercises.

FEzercise 9.4.1. Let 0 : W(R) — O, be the surjection as in Proposition 4.4.2. Let p € R =
R(0%/(p)) be a choice of compatible p-power roots of p (i.e., Q(O) = p). Consider the explicit
choice of generator £ = & = [p] — p of ker 6.
(1) Using that &- W(R)[1/p] " W(R) = ker = ¢ - W(R) (from Proposition 4.4.3), prove
rigorously that the W(R)-module sequence

0= W(R)[X"/nl]ns1 = W(R)[X"/nl]ps1 — A% — 0

cris

is exact. This gives a concrete description of A2 .

(2) Prove that this sequence is also exact relative to p-adic topologies (i.e., when the
middle term is given the p-adic topologies then the subspace and quotient topologies
on the outer terms are the p-adic topologies.) Deduce that this sequence remains
exact after passing to p-adic completions. This can be useful for some studying some
properties of the p-adic completion A;s of A%, (but there are more effective methods
as well, such as by introducing various auxiliary rings which sit between others and
are easier to work with for making p-adic estimates).

(3) Prove that the exact sequence in (1) remains exact after reduction modulo p, and
prove rigorously that for any flat Z,-algebra W we have

WIX"/nllpsr = WIYo, Y1, ]/ (Y = Y1) iz0
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where ¢, ; = (p’™)!/(p"!)? € pZ ;). Deduce the important description
Acris/PAeris = Agyis /DA% = (R (7)) [Yo, Vi, ... 1/ (VS YT, ).

Exercise 9.4.2. Rigorously prove the following fact that was used in Example 9.2.8: for a
unit u € O that is not a root of unity, the field generated by its p-power roots is not abelian
over K. (Hint: reduce to the case when u € 1+ mg and pass to the inverse limit on the
Kummer theory isomorphisms K*/(K*)? ~ H(Gf,Z/(p")). Then invert p and interpret
the meaning of this isomorphism in terms of extension classes. Make sure your proof actually
uses that u is not a root of unity, and keep in mind that K may contain some nontrivial
p-power roots of unity.)
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Part III. Integral p-adic Hodge theory

For many purposes (such as in Galois deformation theory with artinian coefficients) it
is useful to have a finer theory in which p-adic vector spaces are replaced with lattices or
torsion modules. Fontaine and Laffaille gave such a theory in the early 1980’s under stringent
restrictions on the Hodge-Tate weights and absolute ramification in K. The aim of Part III
is to explain the more recent theory of integral p-adic Hodge theory, largely due to Breuil
and Kisin, that has no ramification or weight restrictions. This is essentially a survey of [30],
to which the reader should turn for more details.

For the entirety of Part III we fix a choice of uniformizer = of K, and let £ € W[u] be
the minimal polynomial of 7 over Kj. Finally, A denotes the rigid-analytic open unit disc
over Ky (not over K, when e(K) > 1), so the points of A are identified with the orbits of
Gal(K/Kj) acting on the set

{xef} |z| < 1}.

The reader who is not familiar with rigid-analytic geometry should regard it as analytic
analogue of working with an algebraic scheme over a field that is not algebraically closed:
there are many non-rational points. The actual rigid-analytic spaces we will use are rather
concrete: certain open and closed discs and annuli inside of the open unit disc. It is rings
of convergent series on such discs that are of most relevance to us, and the convergence
conditions can be described by explicit growth and decay properties of coefficients of formal
power series or formal Laurent series over Ky. However, the geometric viewpoint is more
helpful than a purely algebraic one; Using discs consisting solely of Kjy-rational points or
K-rational points will be insufficient.

10. CATEGORIES OF LINEAR ALGEBRA DATA

Our first main goal is to imbue the category MF?{’N of filtered (¢, N)-modules with a beau-
tiful geometric interpretation. Following an idea originally due to Berger, we shall introduce
a certain category of vector bundles (with extra structure, depending on the uniformizer
T € Of) over the rigid-analytic open unit disc A over Ky, and sketch the proof of the
equivalence of this category with the category MF%N’FHZO of filtered (¢, N)-modules over K
whose filtration is effective (i.e., Fil’(M) = M, or equivalently the associated graded module
over K has its grading supported in degrees > 0).

Roughly speaking, the idea behind the construction of this equivalence is to show that
any (effective) filtered (¢, N)-module D can be naturally “promoted” to a vector bundle .4
over the open unit disc A over K, with D recovered as the “fiber of .#Z to the origin.”
See Theorem 10.2.1 for a precise statement. Using Kedlaya’s theory of slopes [29] (as a
black box), we then explain how to translate the condition that D be weakly admissible
into a certain condition (“slope zero”) on .. This description will motivate the introducion
another category of “integral” linear algebra data that enables us to study broad classes of
interesting p-adic Galois representations in §11.

10.1. Modules with ¢ and connection. Fix a choice of coordinate u on A and let & C
Ky[u] be the Ky-algebra of power series that converge on A. For 0 < r < 1 (and r always
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understood to lie in the value group p@ = [K|), the ring @, of power series converging on
the rigid-analytic closed disc A, := {|u| < r} is equipped with the supremum norm

[ £l := sup |f(z)] < oo.
TEA,

These norms make & into a Fréchet space (i.e. we topologize ¢ by uniform convergence on
the A,’s for r — 17). Concretely, 0 is the K(-subalgebra of K,[u] consisting of power series
that converge on every closed subdisc of A with radius r < 1.

If we denote by ¢ : W(k) — W(k) the Frobenius automorphism of W(k) (lifting the
Frobenius automorphism o« +— af of the perfect field k), then ¢ naturally extends to an
endomorphism ¢ : & — O over ¢ by

oy (Z anu") = Z o(ay)u™.

n>0 n>0

Note that ¢4 is finite and faithfully flat with degree p.
We will denote by A the infinite product

(10.1.1) A= (?(g?) |

n>0

which converges (uniformly on closed subdiscs) on A. (In fact, if s(u) € W(k)[u] [%] co

has constant term 1, then the product [],,5, ¢ (s) converges in & [28, Rem. 4.5].) Note that
A depends on the choice of uniformizer 7, and that the zeroes of A in the closed unit disc are
precisely the p”th roots of the zeroes of E") for all n > 0, where h(*")(u) = > om0 P (em)u™
for h =3 ¢,,u™ € 0. We calculate

(10.1.2) 2RI <§Eg§) B (ggl(g) &

n=0

so in particular ¢z (1/\) = w and hence @4 naturally acts on the ring & [ﬂ

The function A should be viewed as a replacement for the p-adic logarithm; see Exercise
10.5.2 for why this is so.

Definition 10.1.1. Define the differential operator Ny : 0 — u€0 C O by Ny := —)\u%.

The minus sign in this definition is due to the fact that A\(0) = 1, and we cannot say more
to justify this sign intervention at the outset other than that it makes certain calculations
later in the theory (for semistable non-crystalline representations) work out well, such as
[30, Prop. 1.7.8]. A straightforward calculation (using (10.1.2)) shows that the relation

E(u)
£(0)
holds, which at u = 0 recovers the familiar relation “N¢y = ppN” between Frobenius and

monodromy operators in p-adic Hodge theory. Thus, we may think of the operators Ny and
e as deformations of the usual N and .

(10.1.3) Nyowpg=p ¢o o Ny
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Since K is discretely-valued, every invertible sheaf on A is trivial. (Indeed, for ¢ € K*
with 0 < |c| < 1, the Dedekind coordinate ring of each of the exhausting discs {|t| < |c|*/"}
is a UFD and hence has trivial Picard group. A line bundle on A therefore admits compatible
trivializations on the A,’s, and hence is globally trivial, via an infinite product trick used
in the proof of [11, 1.3.3]. The discreteness of |K*| implies the exponentially decaying
coefficient-estimates which ensure the convergence of the intervening infinite products.) In
particular, every effective divisor on A is the divisor of an analytic function (which is false
for more general K [25, Ex. 2.7.8]), so 0 is a Bezout domain; i.e. every finitely generated
ideal is principal.

In general & is not noetherian. For example, let {x,} be a collection of K-points of A
with |z,| — 1 and let the nonzero f, € & have divisor ),  [zn] + >,-, 2[z,]. If the ideal
(fr)r>1 is finitely generated then by the Bezout property it must be principal, say (g), and
g must have divisor ) [x,]. But such a g does not lie in the ideal (f.),>1, so we get the
non-noetherian claim for &'. Nonetheless, the Bezout property for & ensures that finite free
O-modules behave much as if they were modules over a principal ideal domain:

Lemma 10.1.2. Let 4 be free O-module of finite rank, and N C 4 an arbitrary submod-
ule. The following are equivalent:
(1) A is a closed submodule of A ,

(2) A is finitely generated as an O-module,
(3) A is a free O-module of finite rank.

Proof. See [30, Lemma 1.1.4]. [ |

We remark that the implication (1) = (3) will be especially useful for our purposes.
With these preliminaries out of the way, we can now define the first category of “linear
algebra data” over & that we shall consider.

Definition 10.1.3. Let Modfﬁ be the category whose objects are pairs (., ¢_,) consisting
of a finite free &-module .#Z and an endomorphism ¢ _, of .#Z satisfying the following two
conditions:
(1) The map ¢ 4 : M — M is pg-semilinear and injective.
(2) The cokernel coker(1 ® ¢_4) of the @-linearization of ¢ _ is killed by a power E" for
some integer h > 0.
Morphisms in Modfﬁ are ¢-module homomorphisms that are p-equivariant. We will abbre-

viate condition (2) by saying that the pair (.#, ¢ 4) has finite E-height. The least integer h
that works in (2) is the E-height of A .

Observe that a ¢g-semilinear operator ¢_, : A4 — A is injective if its O-linearization
1Qon:poll =0 Rp,,, M — M

is injective, and this latter injectivity is equivalent to coker(l ® ¢_4,) having nonzero O-
annihilator. If condition (1) in Definition 10.1.3 is satisfied and anng(coker(l1 ® ¢ 4)) # 0
then by arguing in terms of vector bundles we see that the cokernel of 1 ® ¢ , (which
corresponds to a coherent sheaf on A that is killed by a nonzero element of ¢') has discrete
support in A. Geometrically, condition (2) in Definition 10.1.3 says that the cokernel of
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1 ® ¢ is supported in the single point 7 € A (recall that points of A correspond to
Gal(K / Ky)-orbits of points © € K with |z] < 1).

We can enhance the category Modfﬁ by equipping a module in Modfﬁ with the data of
a monodromy operator over the differential operator Ny : & — €. This gives rise to the
following category:

Definition 10.1.4. Let Mod?’é\fV be the category whose objects are triples (., ¢ 4, N&)
where

(1) the pair (%, ¢.z) is an object of Mod7,,,
(2) N& : M — M is a Ky-linear endomorphism of .# satisfying the relations:
(a) for every f € 0 and m € A,

N (fm) = Ny (fym + fNg (m),

(b)
E(u) M

Né/[ CYun :pm@/// o Ng,

and whose morphisms are &-module homomorphisms that are compatible with the additional
structures.

Remark 10.1.5. Given N& : .# — ./, we obtain a map

1 1
VoA [E} — M {E} R QlA/Ko

by defining
1 du

V(m) =~ N (m)
where the sign is due to the appearance of the sign in the definition of the operator Ny on
0. The condition (2a) in Definition 10.1.4 ensures that V satisfies the Leibniz rule, and so
is a meromorphic connection on .# with at most simple poles supported in the zero locus
of Au, and a straightforward calculation shows that the condition (2b) in Definition 10.1.4
guarantees that V is compatible with evident actions of ¢ _,. Moreover, we can reverse
this construction, and associate a monodromy operator N& on .# to any ¢ ,-compatible
meromorphic connection on .# with at most simple poles supported in the zero locus of
Au. Note that at u = 0, the relation (2b) in Definition 10.1.4 recovers the familiar relation
“Nop =ppN" between Frobenius and monodromy operators in p-adic Hodge theory.

Observe that both the categories Modfﬁ and Mod(fTﬁNV have evident notions of exactness
and tensor product, and the forgetful functor from the second of these two categories to the
first is neither fully faithful nor essentially surjective (but in Lemma 10.4.2 we will establish
full faithfulness on the full subcategory of triples (., .z, N&) such that N& (#) C ui).
Also, neither Modfﬁ nor 1\/[od7ﬁévV is an abelian category, as the cokernel of a morphism of
finite free &-modules need not be free.
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10.2. The equivalence of categories. In thissubsection, we will discuss some ideas related
to the following remarkable result:

Theorem 10.2.1. There are exact tensor-compatible functors

MF¢,N,F11>0 _ﬁ> Mod¢’Nv
K 3 /0

and natural isomorphisms of functors
MoD—>id and Dol —=id

Remarks 10.2.2. Recall that each object of MF?{N’FQO is equipped with a descending, ex-
haustive, and separated filtration by K-subspaces. The notion of exactness in this category
includes the filtration data (in the sense that an ezact sequence of finite-dimensional filtered
vector spaces is an exact sequence of vector spaces such that the natural subspace and quo-
tient filtrations on the common kernel and image at each stage coincide). Hence, MF%N’FHZO
is not an abelian category since maps with vanishing kernel and cokernel may fail to be
filtration-compatible in the reverse direction.

The definitions of 4 and D as module-valued functors, as well as the construction of the
natural transformations as in Theorem 10.2.1, will not use Ny. For example, the definition
of D(#) as a Ky-vector space does not use the data of N& and the definition of .# (D)
in Mod/“oﬁ comes before its Ny-structure is defined. Moreover, once .# and D have been

defined, it turns out to be straightforward to show that for any .# € Mod“/oﬁ there is a
natural map of vector bundles over A

Mo D(M) — M

that is an isomorphism away from the point 7 € A. That this latter map is an isomorphism
on 7-stalks (and hence is an isomorphism) crucially uses the operator N&.

Rather than give the proof of Theorem 10.2.1, we will content ourselves with giving the
definitions of .# and D. Moreover, we will only define .#Z on objects D with Np = 0, as
this simplifies the exposition. For a complete discussion, see [30, Thm. 1.2.15].

Let D be an object of MF%N’FHZO and denote by Fil/ Dy the jth filtered piece of Dy =
K ®k, D. As we just noted above, to simplify the exposition of the construction of .Z (D),
we shall assume Np = 0. We will define .# (D) as a certain &-submodule of & [1] @, D
by imposing “polar conditions” at specific points in A. Roughly, we can think of elements of
2 [ﬂ ®k, D as certain meromorphic D-valued functions on A with poles supported in the
divisor of A\, and we will use the additional data on D (Frobenius and filtration) to restrict
the order of poles that we allow for elements of .Z (D).

For each integer n > 0, let x,, be the point of A corresponding to the (irreducible) Eisen-
stein polynomial E(uP") € Ky[u] (so z, corresponds to the Gal(K /K;)-conjugacy class of a
choice of 7, == »/m € K). If O\, denotes the complete local ring of A at z,, then the
specialization map

ﬁﬁ,xn - K()(ﬂ'n)
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sending a function to its value at x,, realizes Ky(m,) as the residue field of & &xn. It follows
that O} , is a complete equicharacteristic discrete valuation ring with maximal ideal (u —
Tn)OA ., ; i-e. we have a Ko-algebra isomorphism

ﬁA,xn ~ Ko(mn)[u — 7]
of O ,, with the ring of z,-centered power series over Ko(m,). Since
Ko(mn) 2 Ko(mo) = K,

we see that & 2 uniquely contains K over Kj.
Denote by ng O — O the “Frobenius operator” given by acting only on coefficients:

o (Soe) - S e

n>0 n>0

so in particular ¢y is bijective and (g is the composition of ¢y with the pth power map
u +— uP. From this description and the product formula (10.1.1) defining A, we see that
¢ (A) has a simple zero at each zero of ¢y 0 % (E(u)/E(0)) = E(u?")/E(0) in K, and so
as a function on A it has a simple zero at x,, € A. We conclude that that under the natural
localization map

(10.2.1) o — 04,

the element ¢}, (\) € & maps to a uniformizer. Recalling that ¢p : D — D is bijective, the
composite map

A _ A
08, D =n 08100 Qs OB Btto D = Ok, O D

thus induces a map
O3] ®ky D —= OX . [ ]@KDK

Concretely, up to the intervention of the isomorphism ¢/ ® ¢ )", the map ¢, is nothing more
than the map sending a D-valued meromorphic function on A to its Laurent expansion at
T, € A.

Define

M (D) = {5 €0 H Rk, D

) € Z(u — ) Fill Dy for all n > O} .

jEZ
Observe that the sum occurring in the definition of .# (D) is a finite sum, as Fil/ Dy = Dy
for all j < 0 (D is an object of MF(f{’N’Fﬂ}O) and Fil/ Dy = 0 for all j sufficiently large (the
filtration on Dy is separated). Thus, this sum really makes sense as a “finite” condition on
the polar part of ¢ at z,.

Remark 10.2.3. Let A be any ring and let N; and N, be A-modules endowed with decreasing
filtrations. Suppose that the filtration on N, is finite, exhaustive, and separated in the sense
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that Fil! Ny, = N, for j <« 0 and Fil! N, = 0 for j > 0. The tensor product N; ®4 N, has a
natural filtration given by

Fil/(Ny @4 Np) i= ) image((Fil™ Ny) @4 (Fil" Na) — Ny @4 Na),

m+n=j

and this sum is finite because of the hypotheses on the filtration on Ny and the fact that

the filtration on N; is decreasing. We apply this with A = K, Ny = Dg, and N; equal

to the fraction field O3 [u%m of the complete local ring &3 , endowed with its natural

(u — m,)-adic filtration. The sum occurring in the definition of .#(D) is the 0% [ 1 }—

1
Fil° (ﬁg,% [u — } QK DK) :

If h > 0 is any integer with Fil"*! Dy = 0, then we have (v —7,)".#4(D) C 0 ®, D, and
so (since ¢, (M) is (u — m,) times a unit in O}, )

M(D) C N0 @k, D.

Moreover, one readily checks from consideration of finite-tailed Laurent expansions that
(D) is a closed submodule of \™"¢ ®g, D (because the membership condition at each z,,
in the definition of .Z (D) is a closed condition on A™"¢ @y, D). Thus, by Lemma 10.1.2,
we conclude that .Z (D) is a finite free &-module.

From the computation (10.1.2) we have seen that ¢4 acts on & [i] , so a simple calculation
shows that Ng (see Definition 10.1.1) also acts on & [1]. We define operators ¢, (p) and

NV%(D) on O [1] ®k, D by the formulae

module

Y (D) ‘= Po DD and N‘V%(D) =Ny ®1.
The relation (10.1.3) ensures that ¢_s(p) and NV%(D) satisfy the desired “deformation” (Def-

inition 10.1.4(2b)) of the usual Frobenius and monodromy relation Ny = ppN, and one cal-

culates using Definition 10.1.1 that NV%(D) satisfies the Leibniz rule in Definition 10.1.4(2a).
We remark that the above constructions can be generalized to allow for Np # 0. (Beware
that the definition of .Z (D) must be changed if Np # 0.) The following lemma makes no
assumptions on Np (although we have only explained the definition of .#Z (D) when Np = 0).

Lemma 10.2.4. The operators ¢ 4py and N‘V%(D) preserve M (D) C O[] ®k, D. More-
over, the O-linear map
L® ) Py (D) — A (D)
15 1njective, and has cokernel isomorphic to
P (o/EwWio)",
i>0

where h; = dimg gr' Dy (so 4 (D) # 0 if D #0).
Proof. This is essentially [30, Lemma 1.2.2]. |
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It follows at once from Lemma 10.2.4 that ¢_4(py and NV%(D) make .# (D) into an object
of Mod(ffévv and that if D # 0 then the E-height of . (D) is bounded above by the largest
¢ for which h; is nonzero. We have thus defined the functor .# on objects. To define .#
on morphisms (assuming the vanishing of the Np’s, which is the only case in which we have
explained how to define .#Z (D)), one must check that for any morphism o : D — D’ of
effective filtered (¢, N)-modules such that Np = 0 and Np = 0, the map

!
A

restricts to a morphism #(«) : 4 (D) — (D) of (¢, Ny)-modules over &; see Exercise
10.5.3.
We will define

1®Oz:ﬁ[ :|®K0D_>ﬁ|:%:| ®K0D

. @,V ¢, N, Fil 20
D : Mod}¥ — MF™H

by sending a (¢, Ny)-module given by the data (.#, ¢ », N&) to its fiber at the origin of
the disc:

D(AM) = M]|ut.
(Similarly, the functor D takes a morphism to its specialization at v = 0.) We equip D(.#)
with Frobenius and monodromy operators

¢0:=py, modu and N:=NZ mod u.

Observe that .# /u.# is a finite-dimensional Ky-vector space, and that Ny = ppN thanks
to Definition 10.1.4(2b).

In order to show that D(.#) := .# /u.# is an object of MF%’N’FH)O, we must equip the
K-vector space D(.# ) with an effective filtration. To do this, we proceed as follows. Recall
that we have normalized | - | on K by |p| = 1/p. For any r € (|x|,1) that is in the value

group p9Q of the absolute value on FX, “specialization at 77 defines a map
(1022)  D(A)x, Or — D(M) Ok, (0,/Ew)6,) = D(M) Sy K = D(M )i

(recall from §10.1 that &, is the ring of power series over Kj converging on the closed
rigid-analytic disc A, of radius r over K, centered at the origin).

For any r € pQ with r < 1 we write (-)|a, to denote the functor (-) ®, &, from &-modules
to O,-modules. If |7| < r < |7|*/? then we will define an infinite descending filtration on the
left side of (10.2.2) by &,-submodules. The K-linear pushforward of this filtration will be
the desired filtration on D(.#)k; it is independent of the choice of such r. The definition of
this filtration of D(.#) ®, O, by O,-submodules requires:

Lemma 10.2.5. Let .4 be any object of Modfﬁ with E-height h.
(1) There exists a unique O-linear and @-compatible map & = & 4

D(M) @k, O —~
W) W)

PD(aYDPo b
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with the property that
§ mod u=idp.z)-

(2) The map & is injective, and coker(£) is killed by \".
(3) Ifr € (x|, |x|/?) is in the value group of K, then §}A. has the same image in ///}A
as does the linearization
L®ya:poll — M

over A,.

Before sketching the proof of Lemma 10.2.5, let us apply it to define a filtration on
D(M) @k, Oy. 1t follows at once from (2) that &[] is an isomorphism. Moreover, (3)
readily implies that for r as in the Lemma, & ‘ A is an isomorphism away from every m, € A,

and that & ‘ A, induces an isomorphism
(10.2.3) D( M) ® O, =~ (1@ ¢.4)(05l)| .

The right side of (10.2.3) is naturally filtered by its intersections with the E'.#
we define

A That is,

Since @, is Dedekind, each Fil' is a finite free &,-module. Via (10.2.3), we get a filtration
on D( M) ®k, O,; the image of this filtration under (10.2.2) is the desired K-linear filtration
on D(.# ) k. Obviously this filtration is independent of r.

Remark 10.2.6. Note that the definition of E-height implies that
Fil(1© 0.0) (05 )|, = Bt
for ¢ > h; in particular, for ¢ > h the map & ‘ A, induces an isomorphism
Fil'(D(A ) @k, O,) ~ D(M) Rk, E"0,.
Specializing at 7 shows that Fil'(D(.#)g) = 0 for all i > h + 1.

Proof of Lemma 10.2.5. The proof of the uniqueness goes via a standard trick in the theory
of “Frobenius modules”; see Exercise 10.5.4. For the existence of £, note that the data of &
is equivalent to a K-linear section

s:D(M)— M
to the natural surjection such that
Pt ©S = SO PD()-
Begin by choosing any Ky-section sq : D(.#) — .# . We would like to define

s = lim @7y s00p( 1)
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pointwise on D(.#). To see that this limit does indeed converge pointwise, one works on a
fixed lattice L. C D(.#) and makes p-adic estimates in L and in //Z}A for all p € (0,1)NpQ.
P

By construction s is ¢-compatible, so £ exists, establishing (1).
To prove (2) and (3), we fix 7 € (x|, |7|*/?) N pQ and proceed as follows. Since & mod u
is an isomorphism, it follows that & ‘ A . Is an isomorphism for some (possibly large) i > 1.
P

7

By devissage, we will get to the case i=1 1fi > 1, then consider the following diagram of
finite &-modules (which we think of as coherent sheaves over A):

05 (8)

(10.2.4) 0o (D(A) k, O) — (M)

D(AM) R, O M

Due to the fact that £ is p-compatible, this diagram commutes. Moreover, since the cokernel
of the right vertical map 1 ® ¢ 4 is killed by E", where h is the E-height of .#, we see that
this map is an isomorphism away from the point 7 € A; in particular, it is an isomorphism
over Ayp D A i1 since |7 > 7P

Since @;I(Aﬂ,i) = A ,i-1 and ¢ is an isomorphism over A . by hypothesis, we deduce
that the top arrow ¢ (&) is an isomorphism over A ,i-1. The right vertical map is also an
isomorphism over A -1, so the bottom arrow { must be an isomorphism over A -1 as well.
It follows by descending induction that £ is an isomorphism over A,», and hence ¢%,(§) is an
isomorphism over A,. Thus, & } A Is injective, so £ is injective by analytic continuation (any
element of the kernel of the &-module map & must vanish over A, and therefore vanishes
identically on A). The diagram (10.2.4) also shows that ¢| A, and (1®¢.z) | A, have the same

image. Finally, coker (5 ‘ A ) is killed by E", as this is true of coker(1® ¢_4) (by definition),

so running the above analysis of the diagram (10.2.4) in reverse shows that ¢%(E") kills
coker (€| AL ) for all n > 0, and hence A" kills coker(€). |

10.3. Slopes and weak admissibility. We now recall Kedlaya’s theory of slopes [29] and
apply it to translate weak admissibility across the equivalence of categories in Theorem
10.2.1. Kedlaya’s theory works over a certain extension of &', the Robba ring:

X = lim O <y,

r—1-

where O,y <1} denotes the ring functions on the rigid-analytic (open) annulus {r < |u| < 1}
over Ky. Observe that the transition maps in the direct limit are injective, thanks to analytic
continuation, and it follows in particular that & is naturally a subring of %. We identify %
with a certain set of formal Laurent series over K. The ring % is equipped with a Frobenius
endomorphism

oz R — KX
restricting to ¢, on O’; the map @4 is faithfully flat.



CMI SUMMER SCHOOL NOTES ON p-ADIC HODGE THEORY (PRELIMINARY VERSION) 165

The bounded Robba ring is the ring

b._ 1; bnd
Z° = lim 0752,y

r—1-

r<

bounded. We also define

where @'{Dnd‘u' <1} denotes the subring of &.<u<1} consisting of those functions which are

(10.3.1) R = {Z anu" € R

nez

a, € W(k) for all n € Z} ;

this is a henselian discrete valuation ring with uniformizer p.

Observe that Z” = Frac(#™), so in particular %" is a field. In fact, the nonzero elements
of Z" are precisely the units of Z. Moreover, since Z™ is henselian, roots of polynomials
with coefficients in % have canonical p-adic ordinals.

Example 10.3.1. As E is a polynomial in u with W(k)-coefficients, we have E € #™ C %",
Since the leading coefficient of E is a unit in W(k), we see that %E € X" is not in ™. It

follows that the p-adic ordinal of F is 0, so E € (#™)*.

Definition 10.3.2. Let Modi%) be the category whose objects are pairs (M, ¢)/) with M a
finite free Z-module and

oy M — M
a pg-semilinear endomorphism whose Z-linearization 1 ® ¢y @ @5, M — M is an isomor-
phism. Morphisms in Modfg are @-compatible morphisms of #Z-modules. We define the
category Modf%b similarly.

Beware that although the natural inclusion map #Z° — Z allows us to view any Z-module
as an Z°-module, Z is not finitely generated as an Z°-module (since %° is a field but the

domain & is not). Hence, the induced restriction functor from the category of Z-modules

to Z°-modules does not restrict to a functor from Modi@ to Modﬂzb.

The following example will play a crucial role in what follows:

Ezample 10.3.3. Let (A, ¢.4) € Modfﬁ. We claim that the Z-module #y, == # Qo X
equipped with ¢ 4, = ¢.» ® pz is an object of Modf%. Obviously the Z-module .#4 is
free. Since 0 — Z is flat and

1® L - 902’% — M
is injective with cokernel killed by a power of E, we see that the Z-linearization of ¢ 4, is
an isomorphism, as F is a unit in #Z (even in Z™) by Example 10.3.1.

Definition 10.3.4. Let (M, ¢,s) be a nonzero object of Modfg. We say that (M, @) is pure
of slope zero if it descends to an object of Modfgb such that the matrix of ¢ on the descent

has all eigenvalues with p-adic ordinal 0. By a suitable twisting procedure [29, Def. 1.6.1]
we define pure of slope s similarly, for any s € Q. If (., ¢.4) is a nonzero object of Modfﬁ,

we say that (., p.z) is pure of slope s if (M, p.n,) € Modj, is.
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Remarks 10.3.5. (1) The notion of “pure of some slope s” is well-behaved with respect to
tensor and exterior products; see [29, Cor. 1.6.4] (whose proof also applies to exterior
products).

(2) The condition “pure of slope zero” is equivalent to the existence of a ¢y-stable Z™*-
lattice L C M with the property that the matrix of ¢, acting on L is invertible. This
follows by a lattice-saturation argument with the linearization of ¢,; viewed over a
sufficiently large finite extension of the fraction field %° of the henselian discrete
valuation ring Z'"* (where “sufficiently large” means large enough to contain certain
eigenvalues); cf. Exercise 8.4.1.

(3) Since (#£")* = #*, a linear map M’ — M of finite free Z"-modules is a direct
summand (respectively surjective) if and only if the scalar extension M/, — My to
Z is a direct summand (respectively surjective).

The following important theorem of Kedlaya [29, Thm. 1.7.1] elucidates the structure of
Z-modules.

Theorem 10.3.6 (Kedlaya). For any nonzero object (M, py) of Modf%, there ezists a
unique filtration

O=MyCM, C---CM, =M
in ModﬁZ such that each successive quotient M;/M;_1 is a nonzero object of Modf@ that is
pure of slope s;, with the rational numbers s; satisfying

S1 < 8§y < - < S,

The filtration on a nonzero object (M, py) guaranteed by Kedlaya’s theorem is called
the slope filtration of M. QObserve that in contrast with the slope decomposition in the
Dieudonné-Manin classification of isocrystals over K™ (Theorem 8.1.4), here we have just a

filtration rather than a direct sum decomposition.
¢7NV

Given a nonzero object .# of Mod/ﬁ , we know that (.#%, p.4,) is a nonzero object of
Modi@, and it is natural to ask if the slope filtration on (#z, ¢.4,) has an interpretation
purely in terms of .Z in the category Mod%NV. This is indeed the case, as it is possible to
use ¢ and Ny to obtain the following refinement of Theorem 10.3.6:

Theorem 10.3.7. Let .# be a nonzero object of Mod%vv. There exists a unique filtration
(10.3.2) O=My C M C---C M =M

m Mod(ffévv whose successive quotients M;| M;—1 are nonzero objects of Modf’é\[v such that
(10.3.2) descends the slope filtration of M.

We are now able to translate the condition of weak admissibility for a filtered (¢, N)-
module across the equivalence of categories in Theorem 10.2.1.

Theorem 10.3.8. A nonzero object D of 1\/[13‘?(’]\7’1:1120 1s weakly admissible if and only if the
nonzero M (D) is pure of slope zero.

Proof. Since 4 is an exact covariant tensor-compatible functor, we have

NAM(D) ~ M (N D)
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for all i > 0. But .# is an equivalence, so therefore it preserves rank (using the characteri-
zation of rank in terms of exterior algebra). It follows that
det A (D) ~ #(det D).
Recalling that
(10.3.3) tn(D) =tn(det D) and ty(D) = ty(det D),

we are motivated to first treat the case that dimg, D = 1.

If dimg, D = 1 then since N is nilpotent, we must have N = 0. Setting h := ty (D), by
the definition of ¢z (D) we have Fil/ Dg = Dy for all j < hand Fil Dg = 0 for all j > h+1.
Thus, from the definition of .#Z (D) (given in §10.2) we see that

M(D) = \X"(0 @k, D).

If we select a K(-basis e of D, then ¢p(e) = ae for some a € KJ'; by the definition of t (D),
we have ord, (o) = tn(D). Viewing e as a O-basis of 0 @y, D, we calculate (using (10.1.2))

h
(10.3.4) oumn(A"e) = wo(N) ae = (g(“)) a(\"e).
(0)
Now E(u) € (2™)* by Example 10.3.1, and E(0) € p-W(k)* C p-(Z™)* so (E(u)/E(0))" €
p~tu(P) . (™)% by the definition of h. Since o € p!N(P) . (%™)* | we conclude from (10.3.4)
that .# (D) is pure of slope tx(D) — ty (D) (by the definition of “pure slope”). This settles
the case that D has rank 1.

It now follows formally from the properties of .#Z (such as det-compatibility) and of slopes,
and the identities (10.3.3), that a nonzero D is weakly admissible when .# (D) is pure of
slope zero.

For the converse, suppose that D is nonzero and weakly admissible. By Theorem 10.3.7,
the slope filtration of .# (D)4 descends to

(10.3.5) 0=y M C---C M = H(D)
in Mod;*'b’ﬁNV with nonzero ;) #;_, € Mod;*'b’ﬁNV pure of slope s; € Q such that
S1 < Sg < - < S

Our goal is to show that » =1 and s; = 0.

Set d; := tky M;/ M;_, and note that d; > 1. Since A% (/. #;_1) is pure of slope s;d;
by the proof of [29, Cor. 1.6.4], it follows that det.#Z (D) ~ ® det(.#;/.#;_1) is pure of
slope > . s;d;. On the other hand, we deduce from our calculations in the rank-1 case that
A (det(D)) is pure of slope

tN(det D) — tH(det D) = tN(D) - tH(D) =0
by (10.3.3) and the weak admissibility hypothesis. Since det # (D) = .4 (det D) as observed
before, we conclude that

(10.3.6) > sid; = 0.

As 51 < 89 < -++ < 8, in order to show what we want (r = 1 and s; = 0) it is therefore
enough to show that s; > 0.
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Since . is an equivalence of categories by Theorem 10.2.1, corresponding to the nonzero
subobject .#, of .# (D) (in Mod%vv) is a nonzero subobject Dy of D (in MF%™) with
My = M (D).
We have calculated that det . is pure of slope s1d;, so since det .#| = .# (det D;), which
is pure of slope ty(D;) — ty (D) (again by the rank-1 case), we conclude that
Sldl = tN(Dl) — tH(Dl) 2 0

as Dj is a nonzero subobject of the weakly admissible filtered (¢, N)-module D (and therefore
tn(Dy) —tu(Dy) = 0 by the definition of weak-admissibility). This gives s; > 0, as required.
|

10.4. Integral theory. We now describe a certain “integral theory” that will be used in
811 to study semi-stable Galois representations. To motivate this theory, we first define a
new category of linear algebra data.
Definition 10.4.1. Let Mod%v be the category whose objects are triples (.#, ¢_4, N) where

(1) the pair (%, ¢.z) is an object of Mod7,,,

(2) N: M |ull — M |ut is a Ky-linear endomorphism satisfying

Nyg = ppN,
where ¢ := ¢, mod wu.

Morphisms in Mod%N are 0-module homomorphisms compatible with ¢ , and N.

Note that Mod%v is defined exactly like Mod%vv, except that we only impose a mon-

odromy operator “at the origin.” Denote by 1\/[0d%vv’0 and 1\/Iodf’jév’0 the full subcategories

of Mod;*'b’ﬁNV and Mod%v, respectively, consisting of those objects that are 0 or of pure slope

zero (where .# is said to be pure of slope zero if # R4 X is; cf. Definition 10.3.4). There
is a natural “forgetful” functor

(10.4.1) Mod,*¥ — Mod?,"

defined by sending the triple (#, ¢ 4, Nv) to the triple (4, v, Ny mod u). Using the
quasi-inverse equivalences of categories .# and D, one proves (see [30, Lemma 1.3.10(2)]):

Lemma 10.4.2. The functor (10.4.1) is fully faithful.

By Theorems 10.2.1 and 10.3.8, we obtain an exact, fully faithful tensor-functor

W.al ,N,Fil>0
(10.4.2) MF$: Vi

Mod? Mod?0

(10.4.1)
The purpose of the “integral” theory that we will introduce is to describe the category
1\/Iod(ffév’0 and the essential image of (10.4.2) in more useful terms. Before we embark on
this task, let us remark that by the exactness of D, the “inverse” to (10.4.2) on its essential
image is also exact.
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Let & := W(k)[u], and denote by ¢ the unique semi-linear extension of the Frobenius
endomorphism of W(k) to & that satisfies pg(u) = uP. We now define analogues of Modfﬁ

and Mod%v using G-modules.

Definition 10.4.3. Let Mod/“p6 be the category whose objects are pairs (9, pgn) where:

(1) 9 is a finite free S-module and gy is a pe-semilinear endomorphism,
(2) M is of finite E-height in the sense that the cokernel of the G-linearization

1 ® pon: eI — M

is killed by some power E" of E (so 1 ® pg is injective, and hence so is @oy).

Morphisms in Modf6 are (p-equivariant morphisms of G-modules.

As usual, we enhance the category Modfe by adding a “monodromy operator”:

Definition 10.4.4. Let Mod%V be the category whose objects are triples (9, o, Non)
where:

(1) the pair (9T, ay) is an object of Modjg,
(2) Nop is a Ky-linear endomorphism of (9T/ud) @w ) Ko which satisfies
Nop 0 Doy = PPon © Nom
(with Pgyn := o mod u).

Morphisms in Mod%v are morphisms in Modf6 compatible with N mod w.

Remark 10.4.5. Note that the definition of Mod%v parallels that of Mod%v, except that

we only impose Nop on (IMM/udM) @w) Ko and not on M/udM. (This lack of integrality
conditions on Ngy is solely because it is unclear if Lemma 10.4.7 is true with an integrality
requirement on Nyy.) Further, observe that Mod“/o6 embeds as a full subcategory of Mod%v

by taking Ngy = 0. We will not need the category Mod“/o6 until §11.

Remark 10.4.6. By Exercise 10.5.5, we have that & [ﬂ = 0" (the ring of rigid-analytic

functions on the open unit disc that are bounded) and that the natural inclusion
1
S {—} — 0
p

is faithfully flat. Moreover, it follows at once from the definition (10.3.1) of Z'™ that we
have a natural inclusion

Sy — A™

which is moreover faithfully flat, as it is a local extension of discrete valuation rings.
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For the convenience of the reader, we summarize the relationships between the various
rings considered above in the following diagram:

(10.4.3) & = Wk [u]— & m — ¢

|

Sy Ht—— Frac(#™) = #°— %

R~ {0} ——— 2~

Let 9t be any object of Mod%v. Then # := M s O is an object of Mod%v. In fact,
since the natural inclusion & — & — £ has image in Z™™ and F € (#™)*, it follows from
Remark 10.3.5(2) that M ®e & is pure of slope zero if 9 # 0. Since p is invertible in &, the
resulting functor Mod%v — Mod%v factors through the p-isogeny category, so we obtain a
functor

(10.4.4) © : Modfy’ ©Q, — Mod{,;" M MRs 0.
that respects tensor products and is exact.

Lemma 10.4.7. The functor © of (10.4.4) is an equivalence of categories.

Proof. We just explain how to functorially (up to p-isogeny) equip any object .# of Modj”é\[’0
with a &-structure, and refer the reader to the proof of [30, Lemma 1.3.13] for the complete
argument. The key algebraic inputs are:

1 .

F°NO=0" =6 {—} and Z™ N0 =6,
p

where both intersections are taken inside of the Robba ring Z#; see (10.4.3). The idea to

exploit this is the following: by definition of pure slope zero (Definition 10.3.4 and Remark

10.3.5(2)), there is a descent of Ay := .M ®o % € Mod7, to an object Az of Modi%,b with

a p-stable Z™-lattice L C .. We “glue” the 0-module .# and the Z™-lattice L to get
a module MM over O N Z™ = G.
To be more precise, v is functorial in .#Zy [29, Prop. 1.5.5], and under the isomorphism

Moy Qo KB~ My

there exists a subset of .#, that is both an @-basis of .# and an %#"-basis of .# . Indeed,
if we choose an O-basis {v;} of # and an %Z"-basis {w;} of A, then each is an %Z-basis
of My, so there is an invertible matrix A over # carrying {v;} to {w;}. By the first part
of [27, Prop. 6.5], we can express A as a product (in either order) of an invertible matrix
over ¢ and an invertible matrix over Z”, so by using such factor matrices to change the
respective choices of {v;} over & and {w;} over " we get the asserted “common basis”. It
follows that

M= MO Mgy C My
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is a p-stable, finite free Z° N 0 = & [l] -module descending (.#, ¢ ). This shows that ©
is fully faithful, since for any object 9t of Mod?:Y /S the object A := M R O satisfies

1
#onl]
p
so we recover M up to p-isogeny from .Z .
Now for any object .# of Mod%\[, the %™ -lattice L inside .#, allows one to equip

MP = M N My with the desired S-structure (up to p-isogeny); see the proof of [30,
Lemma 1.3.13] for the details. |

Using the fully faithful functor (10.4.2) and the “inverse” of © in (10.4.4), we have:

Corollary 10.4.8. There exists an exact and fully faithful tensor functor
(10.4.5) 6 : "MFEM T — Modfy ©Q,.

Thus, for any object D of W'aMF?(’N’FﬂZO, there is a canonical S-structure on .# (D) up
to p-isogeny. For example, in the next section, we will be particularly interested in the case
that

D = Dy(V) := (By ®q, V)"
for some object V of Repg (Gk).

We now wish to describe the essential image of ©. Todo this, we must answer the following
question: for which objects 9 of Mod%v does the object A := M Rs O of Modj”é\[’0 admit
an operator N as in Definition 10.1.4(2) that lifts Nox®1 on (9/u9N) @ww) Ko = A Jull
and makes the triple (., 4, N&) into an object of Mod¢ v 9

Thanks to Lemma 10.2.5, for any object .# of Mod?Y o We have an injective map of finite
free O-modules

§:D(M) Rk, O — M
with cokernel killed by A" (where h is the E-height of .#), so in particular £ is an isomorphism
after inverting A. Therefore, there exists a unique connection

1
satisfying V_4(d) = —N(d)% for all d € D(.#). Moreover, V_, commutes with ¢ , and has
poles of order at most h supported on the zeroes of A\, and at worst a simple pole at u = 0.
Defining N&& @ .#[1/\u] — #[1/\u] by the relation

1 d
(10.4.7) V.ulm) = =N (m);u
for all m € .#, as in Remark 10.1.5, gives the only possible N& for .4 = M ®e O as above.
In case .# has O-rank 1, it follows from a calculation (see the proof of [30, 1.3.10(3)]) that

V.x» has at worst simple poles; that is, N‘V” carries . into itself in the rank-1 case. Thus:
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Corollary 10.4.9. Let 9 be an object of Mod%V ®Q, and let A = M Qs O be the

corresponding object of Mod%v’o. Then 9N is in the image ofé if and only if the connection

V.« as in (10.4.6) has at worst simple poles (equivalently, if and only if the operator N&
defined by (10.4.7) is holomorphic). In particular, any such MM with &-rank 1 is in the image

of ©.
10.5. Exercises.

Ezercise 10.5.1. Prove that the infinite product in (10.1.1) does converge uniformly on closed
subdiscs of A.

FEzercise 10.5.2. This exercise shows how A in (10.1.1) is an analogue of the p-adic logarithm.
If we work with E(u) = (u+1)? —1 = ®,(u+1) and take 7 = (, — 1, then instead of working
with a compatible system of p-power roots of 7 (which is not “Galois” over Kj) we might
instead prefer to work with the system of values (,n» — 1 where {(,n} is a compatible system
of p-power roots of unity. This leads to the following considerations.

Change the definition of ¢,z by requiring ¢g(u) := (u + 1)? — 1 (rather than u — u?).
We claim that with these choices, the analogous definition of A akin to (10.1.1) will give
A= w. Indeed, check that with the modified definition of ¢, as just made, the formula
in (10.1.1) works out as follows:

. o Opn(ul) 1 - (u+1)§N—1 _ log(1+u)
N—oo p u

N—oo
n=0 p u

Y

where you should use the binomial theorem and simple p-adic estimates on the explicit
binomial coefficients to justify the final equality and the uniform convergence of the product
on each A,.

Ezercise 10.5.3. Let a : D — D’ be a map of filtered ¢-modules (so vanishing monodromy)
which have effective filtrations (i.e., their nonzero gr’s only occur in degrees > 0). Show that
the map

A

restricts to a morphism #(«) : (D) — (D) of (¢, Ny)-modules over &. You will need
to use the definition of .#Z and the fact that « respects the filtrations.

1 1
1®a:ﬁ[—] ®K0D_)ﬁ|:X:| ®K0D

Ezercise 10.5.4. Prove the uniqueness of ¢ as in Lemma 10.2.5(1). Rather generally, by
taking differences, the problem is to prove that if £ : .#’ — .# is a morphism in Modfﬁ such
that {(#') C u.# then prove that & = 0. (Hint: if £ # 0, show there is a maximal n > 1
such that & = u™h for an O-linear map h : .#' — A ; beware that h is not ¢-compatible!
Use the p-compatibility of £ and that n > 1 to get a contradiction.)

Exercise 10.5.5. Let A be a complete discrete valuation ring, and F' its fraction field. Let
f=> cyu" € Fu] be a formal power series over F.

(1) Prove that f converges on the open unit disc over F if and only if |c,|r™ — 0 for each
0 < r < 1. Give a counterexample if one only works with F-rational points of the
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open unit disk. Give an example of such a convergent series with A = Z,, for which
the |c,|’s are unbounded.

(2) Assuming that f does converge on the open unit disc over F, prove that it is bounded
on this disc if and only if the |¢,|’s are bounded. In other words, prove that Afu]®4 F
is the F-algebra ¢4 of bounded functions on the rigid-analytic open unit disk over
F.

(3) Deduce that "¢ is a Dedekind domain, and prove that " — ¢ is faithfully flat.

11. ©S-MODULES AND APPLICATIONS

We now turn to the task of introducing the category of G-modules, roughly an integral
version of the category of vector bundles with connection from §10, and we set up a fully
faithful functor from the category of effective weakly admissible filtered (¢, N)-modules to
the isogeny category of &-modules (and we describe the essential image). In the reverse
direction we construct a fully faithful functor from the category of G-modules into the
category of G i__-stable lattices in semistable G -representations, where K, /K is generated
by compatible p-power roots of a uniformizer 7 of 0.

As applications, we obtain a proof of the conjecture of Fontaine that the natural fully
faithful functor from semistable representations to weakly admissible modules is an equiv-
alence, and we obtain a proof of the conjecture of Breuil that restriction from crystalline
G g-modules to underlying G k. -modules is fully faithful. We also use G-modules to describe
the category of all G _-stable lattices in crystalline representations of G.

We begin by using the fully faithful tensor-compatible functor

- 5]

D —— “G-structures on .#(D)”

to study Repgp G k. For any profinite group I', we define:

Rep™™ () _ category of continuous I'-representations on
p ~ finite discrete abelian p-groups,
R (I) _category of continuous linear I'-representations on
Pz ~ finitely generated Z,-modules,
Repfee () __category of continuous linear I'-representations on
Pz, ~ finite free Z,-modules,

Repq (I) _ Ea@egory of continuous linear I'-representations on
nite-dimensional Q,-vector spaces.
Morphisms in each category are the obvious ones. Observe that RepQP(F) is the p-isogeny
category of Repfzrie(f‘ ).
Recall that K/Kj is a totally ramified extension of K, = Frac(W(k)) with uniformizer
T € Ok. Choose a compatible sequence of p-power roots of ,

T, = T eK (m=n),
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and set K., := UKy(m,) C K and G, = Gal(K/K) C Gk.
The main goals of this section are:
(1) Show that weakly admissible implies admissible; i.e. that if D is a nonzero object of
waMFLY then

D = Dy(V) := (By ®q, V)"

for some object V' of Repsép(G K)-
(2) Show that the restriction of the natural functor

Repq, (GKx) — Repq, (Gk..)

cris

to the subcategory of crystalline representations Repg~(Gx) C Repq, (Gk) is fully
faithful, and describe Gk -stable Z,-lattices in crystalline p-adic representations of
G using Mod“/o6 (recall from Definition 10.4.3 that this is “the category Mod%v

with N = 07). Beware that the restriction functor Repg, (Gx) — Repq, (Gk,,) is
not fully faithful, so the crystalline condition in (2) above is essential. See Exercise
11.4.4.

11.1. Etale p-modules revisited. In §3 we developed the theory of étale ¢p-modules, and
now we wish to reinterpret some aspects of that theory by using the ring B = lim Ow/(p) =
lim Oc, /(p) in a new way. Recall that in our earlier work with R we chose an element
p € R with p® = p (which amounts to choosing a compatible system of p-power roots of p
in 0%), and we used it to do several things (e.g., [p] — p generates ker #). Now we shall use
a variant of this element that is adapted to our particular field K. Using our fixed choice of
compatible system {m,} of p"th roots of 7 in 0% (n > 0), we define

7= (Tn)n>0 € R.

Observe that by its definition, the isotropy subgroup of 7 in G is Gk__ . There is a natural
map

(11.1.1) & = W(k)[u] — W(R)

Zn}O a”un — ZnZO n [%]n

which is Gk, -invariant (by definition of 7) and -compatible (as [7*] = [7]). Since 7 €
Frac R is nonzero we have [r] € W(Frac R)*, so (11.1.1) extends to a map

(11.1.2) S [L]—— W(FracR) .

The source of this map is a Dedekind domain in which (p) is a prime ideal and the target is
a complete discrete valuation ring with uniformizer p, so (11.1.2) gives a map

A

j: 6 [%](p)% W(Frac R)
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that fits into a commutative diagram

A

) N W (Frac R)

(11.1.3) Og =6 [1]

k((w)

(with both horizontal maps defined by sending u to [7], and the bottom map over k). Since
Frac(R) is algebraically closed, the bottom side of the diagram provides a separable closure
of k((u)) in Frac(R).

The ring O in (11.1.3) is a complete discrete valuation ring with uniformizer p, and it
has a “Frobenius endomorphism” ¢4, induced by ¢e; due to the p-equivariance of (11.1.1),
the horizontal maps in (11.1.3) are p-compatible. Let 0%"/0s be the maximal unramified
extension of O with respect to the separable closure k((u))sep € Frac(R) of k((u)). We define

& :=Frac(Og) and & := Frac(0g").

Frac R

By the universal property of the strict henselization 3" of 0, there exists a unique map
j: 0% — W(FracR)

over j which lifts the inclusion k((u))sp < Frac R on residue fields. We thus obtain a
commutative diagram

01 /p] = &= W(Frac R)[1/p]

j
e

ounc d W(F\fac R)
/

;Fhe unicity of 5 implies that the Gx_-action on W(Frac R) over O preserves the subring
J(OF).

Remark 11.1.1. The natural map & — O} is flat since it factors through an injection from
the Dedekind localization &[1/p], and the natural map &,y — Oy is faithfully flat (as it is a

local extension of discrete valuation rings). Moreover, since £ = u® mod p (e = [K : Ky)),
we see that £/ € 07 because Oy is a discrete valuation ring having residue field k((uw)).

Os

The following important theorem is a special case of the general isomorphism (1.3.1) from
the theory of norm fields, and as we saw in §3 it allows us to study Gx_ -representations via
characteristic-p methods:
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Theorem 11.1.2. The natural action of Gk on O3 via the inclusion j induces an iso-

morphism of topological groups
G —= AW(O" ) O5) ~ Gruy-

We will not prove this theorem in these notes; the analogous case of K (f1,e) will be proved
in §13.4. To handle cases beyond the cyclotomic case it seems best to argue by using the
entire general theory of norm fields as in [51]. In what follows, we shall apply the theory
from §3 with the axiomatic ring 0, there taken to be Oy as just defined above (using 7). In
particular, we note that via Theorem 11.1.2, Fontaine’s functors Dgs and V¢ from Theorem
3.2.5 and Theorem 3.3.4 provide equivalences between the category Repzp(G K.,) and the
category (IDMZY; of étale p-modules, as well as between the corresponding isogeny categories
upon inverting p, all compatibly with the operations of linear algebra.

Example 11.1.3. Tt follows from Remark 11.1.1 that for any object 9 of Modfe, the scalar
extension M := Og Rs M is an étale p-module.

We have seen in our development of p-adic Hodge theory that contravariant functors are
sometimes more convenient than covariant functors. In what follows it correspondingly turns
out that contravariant versions of the functors from §3 will be more useful than the covariant
ones which were studied there. in view of how the duality functors were defined in §3, we
are led to define the following categories and contravariant functors between them.

Definition 11.1.4. Define Modfﬁﬁ to be the category of étale p-modules over 0, whose

underlying 0¢-modules is finite free, and Mod“/og;r to be the category of étale p-modules over
U5 whose underlying Og-module is torsion.
Define the contravariant functors

Vg, : Mod7, — ReprrEC(G Kv)r D, Repfzrie(G Kw) — Mod7,
by
V5, (M) i= Homg, , (M, GF ), Dj, (V) = Homg, g, (V. O3,

and similarly on torsion categories using & /0%" in place of @

In Theorem 3.2.5 we considered covariant equivalences denoted De and V¢ between the
bigger categories ®M{ and Repy (Gk..) (allowing p-power torsion). The relation with
the above contravariant functors on “finite free” objects is that for M € Modfﬁﬁ and T €

free

Repz °(Gk..) we have natural isomorphisms

Dy(T) i= (T ®g, O3~ ~ Dy (TV)"

and -
Véf’(M) = (M ®Zp ﬁ;n)wzld ~ KEF(MV)V

in Repfzrie(G K.,) and Modfﬁg respectively, using usual linear duality on finite free modules
(i.e., Homg, ,(, Os) and Homg, (g, (+, Zy)). We have the same formulas in the torsion cases,

except that the duality functors must be defined using maps into &£ /03" and Q,/Z,.
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In view of these formulas, Theorem 3.2.5 immediately gives that Vi, and Dy are quasi-
inverse equivalences between the categories of finite free objects, as well as between the
categories of torsion objects.

Our aim is to adapt the theory of étale p-modules to study &-modules (rather than
Og-modules), and to find an analogue of Theorem 3.2.5 describing the essential image of

cris

Repq, (Gk) in Repq, (Gk..) in terms of G-modules and certain linear algebra data on them.
To do this, we will replace %" and 03" with

S"™ = Opum N W(R) C W(FracR),

G = Gpu N W(R) C W(FracR).

Note that & C 0 N W(R) (so &"™ is a flat &-module). In Exercise 11.4.1 you will show

that G is isomorphic to the p-adic completion of G"™, thereby justifying the notation.

Beware that, unlike the case of modules over the discrete valuation ring Oy, finitely gen-
erated p-power torsion &-modules need not be isomorphic to a direct sum of modules of the
form &/p"&. (For example, let I C & be the ideal I = (p? — u,u?), and consider the mod-
ule G/1.) The correct analogue of “finitely generated p-power torsion &g-module” in this
context turns out to be a finite p-power torsion G-module of projective dimension at most
1. (Over a discrete valuation ring, all finitely generated modules have projective dimension
at most 1.)

11.2. 6-modules and G_-representations. Recall the definition (Definition 10.4.3) of
the category Modfe. We will treat this category as an analogue of the category Modfﬁg of
étale o-modules over O, with finite free underlying ¢-module. We now define the G-module
analogue of the category of torsion étale p-modules over O:

Definition 11.2.1. Let Modféor be the category whose objects are finite S-modules I
such that:
(1) 9 is killed by some power of p and projdim 9t < 1,
(2) there is a pg-semilinear map oy : M — N such that the S-linearization
1 ® pom: eI — M
is injective and has cokernel killed by some power E" of E (so gy is injective).

Morphisms in Modféor are p-compatible maps of G-modules.

Observe that if 91 is a direct sum of &-modules of the type & /p"& then any pg-semilinear
map @ : M — M has G-linearization that is automatically injective since the image of £
in (6/p&)[1/u] = k((w)) is a unit. Although not every object 9t of Mod?<™" is a direct sum

/&
of objects of the form &/p"&, we do have:

Lemma 11.2.2. Every object M of Mod“/D’Gtor is a successive extension of objects that are free
over & /p&.

Proof. See the proof of [30, Lemma 2.3.2], and note that although that proof assumes that
the cokernel of 1® gy : P — M is killed by £, the same argument works with any power
E" of E. [ |
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Using that
S/p6 = klu] C k() = Os/p0s,

some nontrivial calculations of Fontaine give:

Lemma 11.2.3. Let M be any object of Mod%or. Then there is a natural isomorphism of
Z,|G k. |-modules

1
p

VE(OM) := Home,, (sm & H /Gun) EL VY (6 0eM) .

It follows immediately from this lemma and Remark 11.1.1 that Vg is exact, commutes
with tensor products, and

it M~EP&/p& then V(M) ~EP2Z/p"Z.

Passing to inverse limits gives:
Corollary 11.2.4. We have:
(1) Let M be any object of Modfg. Then
Vi5(9) := Home , (M, &™)

is a finite free Z,-module of rank equal to rkg(9M), and the natural map of Z,[Gk._ -
modules
V() — V5, (M s Os)

obtained by extending scalars to Og 1s an isomorphism.
(2) Let Vi : Modf6 — Repfzrie(GKoo) be the functor defined in (1). For all n > 1, there
are natural isomorphisms

V()/(p") —— Home,, (M/p"M, & /p" &™) —— V(M/p"IM).
Thus, the functor Vg on the category Modfg is exact and commutes with tensor products.

Remark 11.2.5. For any object 9 of Mod7s, the Z,[G k., ]-module

Ve () i= (Mas &)

satisfies
Ve, (M) = Vi (MY).

Just as the functor Dy provides a quasi-inverse to V, , we have the following G-module
analogue:

Lemma 11.2.6. Let 9 be an object of Modf6 with &-rank equal to d, and define
m/ = HOIIlZP[GKOO} (K’é(fm), @1) .
Then MM is a finite-free G-module of rank d, and the natural map M — M’ is injective.

Using Corollary 11.2.4 and Lemma 11.2.6, one can prove:
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Proposition 11.2.7. The functor Mod“/DG — Modfﬁg given by
(11.2.1) M— MR Os
(see Example 11.1.3) is fully faithful.

The proof of Proposition 11.2.7 is a straightforward adaptation of the “gluing argument”
in the proof of Lemma 10.4.7, replacing # and 0 with ¢ and & respectively. However, it
requires one extra ingredient:

Lemma 11.2.8. Let h : 9 — M be a morphism in Modfg. If
hl: M s O — MR O
18 an isomorphism, then so is h.

Proof. Since M’ and 9t must have the same G-rank, we can pass to determinants to reduce
to the case that 9V and 9% both have rank 1. Let .#Z’ := O(9') = M g O and A =
O(M) = M ®es O be the corresponding objects of 1\/Iod%v’0 under the equivalence © of
(10.4.4). The map h thus induces a nonzero map between rank-1 ¢-modules

(11.2.2) he@l: H — A.
By the equivalence of categories of Theorem 10.2.1, this map corresponds to a nonzero map
D(h®1): D(A") — D(A)

of rank-1 objects of MF?(’N’F@O. By the final part of Corollary 10.4.9, these filtered (¢, N)-
modules are weakly admissible.

A 1-dimensional weakly admissible filtered (¢, N)-module has its unique filtration jump
determined by its slope, so any nonzero map between such rank-1 objects is not only a K-
linear y-compatible isomorphism, but also respects the filtrations in both directions. (This
is not true without the weak admissibility property!) Hence, D(h ® 1) is an isomorphism.

Since D is an equivalence, it follows that (11.2.2) is an isomorphism. But & % — 0 is
faithfully flat by Remark 10.4.6, so the map

[ ] -

is an isomorphism as well. To conclude that h itself is an isomorphism, it remains to show
that it is an isomorphism over &, since & is a normal noetherian domain. (See Exercise
11.4.3.) But &) — O is faithfully flat by Remark 11.1.1, so the isomorphism claim
follows. |

Recall from Proposition 9.1.11 that the functor

X cris, <0 ,Fil>0
Dcris . Repr (GK> - W'a'MFiv !

Vi (Beris ®q, V)"
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is fully faithful, with inverse given by the restriction of V,,; to the image of D, ;. Combining
this with Corollary 10.4.8, we obtain a fully faithful functor

(11.2.3) Re%EQ«EQL—»WaMFWMNL_»Nb&Q®Qp

crls

On the other hand, by Proposition 11.2.7 we have a fully faithful functor

(11.2.4) Modfg ®Qp;> Modj, ®Q, ae (Repfree(GKoo)) ® Q, ~ Repq, (Gk..)

f’lf
(which coincides with the functor Vg on p-isogeny categories thanks to Corollary 11.2.4(1)).

Definition 11.2.9. An object in the essential image of (11.2.4) is called a p-adic Gk, -
representation with finite E-height.

We will see later that D is an equivalence of categories (i.e. weakly admissible implies
admissible) and that the composite functor

R pgls <O(GK)C Modﬂp ®Qp

(11.2.3) (11.2.4) pQP(GK“’)

coincides with the “restriction functor” Repq, (Gr) — Repq, (Gk..) evaluated on crystalline
representations.

Using G-modules, we now describe Gi__-stable Z,-lattices in p-adic Gk, _-representations
of finite E-height:

Lemma 11.2.10. Fiz an object M of Modf6 with G-rank at most d, let V := V(M) ® Q,
be the corresponding d-dimensional object of Repq, (Gk..), and set Mg = M e &. Then
the functor

Vi : Modfg —— Repy™(G.,)
restricts to a bijection between objects N of Mod76 that are contained in Mg and have S-rank
d, and Gk -stable Z,-lattices L C'V with rank d.

The proof will show that the E-height of 91 as in the lemma is independent of 91 (and is
equal to the E-height of 90t).

Idea of proof. By Theorem 3.2.5, for any Gk, -stable Z,-lattice L C V' there is a unique
object A" of Modfﬁg that is contained in .#Zs with full Oc-rank and satisfies

L=V (AN)

(recall 4" is given explicitly by 4" = Homg,[g,_ | (L, @)) The key idea is to adapt the

gluing method used in the proof of Lemma 10.4.7, using Corollary 11.2.4 and Proposition
11.2.7 to show that

1
m:wmmH C M
b
is an object of MOdf6 (e.g., it is finite and free over &) and that the natural map

NRes O — N
is an isomorphism. See the proof of [30, Lemma 2.1.15] for the details. u
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11.3. Applications to semistable and crystalline representations. Recall that the
ring of p-adic periods By, = B i is intrinsic but its map to Bgr depends on a choice of

G -equivariant logz : K — K with logz(p) € Koy; we made the convention loggz(p) = 0.
The filtration on Dy (V) depends on this choice. The functor

Dst : Repr (Gk>

N
MF%

V——— (V®q, Ba)"
has restriction to Reps(sp (Gy) that is fully faithful and has image in the subcategory ¥-*MF (f{’N
of weakly admissible filtered (¢, N)-modules (Proposition 9.2.14 and Theorem 9.3.4).

On the full subcategory RepSt’\O(G i) of representations having Hodge-Tate weights < 0,
the functor Dy has image contained in the subcategory W'aMngN’FiDO. We have the following

diagram of categories, in which all sub-diagrams commute, except possibly the large rectangle
near the bottom:

Dst ; (10.4.1)
Repg~ (G ) = "+MF 120 ——— Mod{;" " ——— Mod/""
(1

AN
Rechr;s (GK>($ w. aMFgD F11>(3rm %\/[ d¢ ,Nv,0,N= OC—> Mod/%ﬁo Mod?év ®Qp

res (10.4.7) | ~
R G > Mod? (11.2.7) SM d¢ 2Q
ePQp( Koo =~ vodg, ®Qy 0 P

Ve

*

Note that if we start at Repms’@(G k) and move around the large rectangle in the bot-
tom of the diagram in the clockwise direction, then we obtain a fully faithful embedding
Repcm’go(G k) <= Repq, (Gk..). If we know that this rectangle commutes, we obtain a proof
of a conjecture of Breuil:

Corollary 11.3.1. The natural restriction map
res RepC“S(GK) — Repq, (Gk..)
15 fully faithful.

Remarks 11.3.2. Before sketching the proof of Breuil’s conjecture, we make the following
remarks concerning the preceding large diagram:

(1) Recall that the essential image of the curving map in the upper right corner of the
diagram is described by Corollary 10.4.9.
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(2) The two maps labeled (t) in the diagram are not essentially surjective. This prevents
us from generalizing Corollary 11.3.1 to the case of semistable representations (and
rightly so, as is shown in Example 11.4.4.

To prove Corollary 11.3.1, we first observe that after twisting by Q,(—n) for large enough
n, it is enough to show that the restriction map

Repgij’@(GK) — Repq, (Gk..)

is fully faithful. As noted above, this follows if we can show that the large rectangle in the
diagram commutes. Such commutativity follows once we know that the entire outside edge
of the diagram commutes. Using the fact that

‘/st . w.aMF%N,FiIZO N Repth,pg(](GK>

is quasi-inverse to Dy on the essential image of Dy, it therefore suffices to prove the com-
mutativity of

(1131) W'aMF?(’N’FH>OC S} Modjﬁé\f ®Qp

l/‘/st l(ZG)*(@Qp
Repg,~ (Gx) —> Repg, (G..)

where the right side “forgets N” and the top horizontal arrow is (10.4.5). Note that we
do not yet know that the left side is an equivalence, since we have not yet proved “weakly
admissible implies admissible”.

To show that (11.3.1) commutes, let D be any object of **MF2"™>0 Let .4 := .4 (D)

be the corresponding object of 1\/[0d(ffﬁ{vv’0 (via Theorems 10.2.1 and 10.3.8), and choose an
object M of Mod%v such that M ®g O ~ A in Mod%v (via the equivalence of Lemma
10.4.7), so M = é(D) Recall that 9t is functorial in D, up to p-isogeny. The commutativity
of (11.3.1) follows immediately from the following statement by dualizing in Repq, (Gk..).

Proposition 11.3.3. With the notation above, there is a natural Q,[Gk. |-linear isomor-
phism

Homg (9ﬁ> @1> ®z, Qp — Hompy 4 v (D, BY)

V() @z, Qp Hompy o n (D, Byt)

Va(D)
Before we explain the proof of this proposition, note that by Corollary 11.2.4(1) we have
dime Vé(m) ® Qp = l"k6<m) = dimKO ////u/// = dimKO D,
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so by Proposition 11.3.3 (which gives dimq, Vii(D) = dimqg, VE(IM) ® Q,) we deduce that
dimq, V(D) = dimg, D. Thus, by weak admissibility of D and Proposition 9.3.9, the
natural map

By ®q, V(D) — By @k, D
is an isomorphism. Hence, D is admissible by [22, Prop. 5.3.6].

Remark 11.3.4. Since D above was any object in W'aMngN’FiI>O, this shows that “weakly
admissible implies admissible” in full generality, as we can always shift the filtration to be
effective.

Proof of Proposition 11.3.3. By Proposition 9.3.9, if D is admissible if and only if it is weakly
admissible and dimgq, V;(D) > dimg, D. Thus, it suffices to construct a natural Q,[G |-
linear injection

(11.3.2) V() ® Q,——=V;i(D) = Homy, g n (D, Byt).

We will just do this in the case that Np = 0, as it contains the essential ideas for the general
case (see the proof of [30, Prop. 2.1.5] for the details in the general case).

Recall that B ®k, K is equipped with a filtration via its inclusion into the discretely-
valued field Bgr, and that a Ky-linear map D — B is compatible with filtrations if the
extension of scalars Dg — Beis ® K respects filtrations (i.e. if the composite Dy — Bggr
is compatible with filtrations). Since BY=" = B and Np = we have V(D) = Vi (D), so
our aim is to construct a natural Q,[Gk__]-linear injection

(11.3.3) Vs() ® Q, = Homg , (M, @1) ®z, Qp—Hom, ri(D, BY;) = V(D)

(the final equality using the effectivity of the filtration on D).
An element of & has a Taylor expansion ¢, u™ with ¢,, € Ko = W(k)[1/p] and |cp,|r™ —
0 for all 0 < 7 < 1. For p~¥/®= < 4 < 1 we have |m!|/r* — 0, so
|
Imlem| = (lemlrg') - @ — 0.
"o

Thus, by [21, 4.1.3] there is a natural map of Ky-algebras
(11.3.4) 0 — BF

extending the natural map & — W(R) C B, defined by “evaluation at [7]” (i.e. u — [7]).
Using the the natural topologies on & and BJ,, one checks that this map is moreover

continuous, and since Kyu] is dense in & it is the unique such continuous Ky-algebra map.
Since & B} is dense in &, the map (11.3.4) is also p-compatible, as this is true of
1 1
S {—} — W(R) {—}
p p
(thanks to the relation [77] = [7]?).

We will define the map (11.3.3) as the composite of two maps. First, recalling that
M =M Re O, consider the map

(11.3.5) Home,,(M, &) — Home ,(M, BY,,) == Homy (A4, B,

cris cris
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defined by composition with the natural map S — W(R) C B,.. This map is injective.
Second, we consider the map

(11.3.6) Homg (4, BY,)) — Homg (D ®x, 0, Bt,) ——= Hom, (D, B},,) .

given by composition with the ¢-compatible &-linear map
£ D®k, O =D(M)Rk, O — M

of Lemma 10.2.5. We claim that (11.3.6) is injective with image contained in
Hom,, p1(D, BY,,) € Hom, (D, BY.,.).

To verify these claims, we proceed as follows.
Obviously E(u) = (u — 7)G(u) in K[u], for some G(u) € K[u] with G(7) # 0. It follows
that the map

(11.3.7) S — BT

cris

C Bin
(defined by u +— [7]) carries E to
E([x]) = ([x] = =) - G([7]).

As [7] — 7 is a uniformizer of B, and G(7) # 0, we see that G([7]) € (Bji)* and hence that
E([7]) is a uniformizer of Bj. Therefore, (11.3.7) induces a local map of local Ky-algebras

1
S {—} — B
Pl

Passing to completions (and recalling that Bj, is a complete discrete valuation ring) we see
that the map (11.3.4) extends to a Ky-algebra map

1 N
ﬁg T S |:_:| - B;_R
’ Pl
which is even a map of K-algebras, as can be seen (via Hensel’s Lemma) by examining the
induced map on residue fields.
Thus, given an O-linear map .# — B, C B, the map
(1 ® ¢.0)(ppM) — B
induced by restriction carries (1® .4 )(¢%.#) N E' A into Fil' B}, and hence is compatible
with these filtrations. Moreover, & : D(A#) ®g, O — M is p-compatible and so has image
landing in
pu( M) S (1) o).
But [30, 1.2.12(4)] gives that the induced map

Opx @x D(M )k = OF , Qg D(M) — OX . @6 (1 @ p.0) (05 H)

is a filtration-compatible isomorphism (where the filtrations are the usual tensor-filtrations;
cf. Remark 10.2.3). It follows at once that (11.3.6) has image contained in Hom,, gu1(D, Bi.,.);
moreover the resulting map

(11.3.8) Homg (A, BY,,) — Hom, ru(D, BE,)

cris cris
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is injective since the injective map
(L ®e.n)pot) — M

has cokernel killed by some E" and E([7]) € Bjy is a nonzero element of a domain.
Composing the injective maps (11.3.8) and (11.3.5) gives a Q,-linear injective map

Homg ., (M, @1)(—> Hom,, g (D, BY,,) -

This map is moreover Q,[Gx_ ]-linear because the action of G on B, leaves the map
0 — B[, invariant, as this holds on & C & due to the fact that [7] is Gk -invariant (by

definition of 7). This gives the desired map (11.3.3). |

11.4. Exercises.

Ezercise 11.4.1. Recall the definitions &"™ = Ogum N W(R) C W(FracR) and Guw =
Ogm NW(R) C W(Frac R) at the end of §11.1. Use that W(R) is p-adically separated and

complete to prove that the inclusion &' — &' identifies S with the p-adic completion
of G"™.

Exercise 11.4.2. Carry out the arguments with inverse limits needed to deduce Corollary

11.2.4 from Lemma 11.2.3. In particular, explain why it is essential that we work with &un
and not &"™ in the description of Vig(9M).

Ezercise 11.4.3. At the end of the proof of Lemma 11.2.8, the following fact was used (over
a 2-dimensional base ring &): if A is a normal noetherian domain and h : M" — M is a map
between finite projective A-modules such that the localizations h, are isomorphisms for all
primes p with height at most 1, then A is an isomorphism.

(1) Prove this fact. (Hint: reduce to the case when A is local, so the modules become
free.)

(2) If F is the fraction field of A, prove that an F-linear map M} — Mp carries M’
into M if and only if it carries M, into M, for all primes p of A with height at most
1. (Geometrically, a rational map between vector bundles over Spec A is defined
everywhere if it is defined in codimension at most 1, at least when A is normal.)

(3) Show that if we we relax “projective” to “torsion-free’ for M and M’ then the
conclusions of each of the preceding parts can fail when dim A > 1 (i.e., give coun-
terexamples).

(4) Is (1) true if A is a non-normal noetherian domain? How about (2)?

Ezercise 11.4.4. Consider the Tate curve £, over K. The representation V,(Ey) is reducible
and semistable (Example 9.2.1, Example 9.2.9), but upon restriction to G the extension
structure split. as Q, & Q,(1).
(1) Prove that V,(E;) has non-abelian splitting field over K.
(2) Prove that V,(E;) and Q, ® Q,(1) are non-isomorphic as Q,[G k]-modules. Deduce
that restriction from G to Gg_ is not fully faithful on the category of semistable
p-adic representations of G.
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12. APPLICATIONS TO p-DIVISIBLE GROUPS AND FINITE GROUP SCHEMES

We now apply the theory of G-modules developed in §11 to the study of p-divisible groups
and finite flat group schemes over 0. We will also discuss applications to torsion and lattice
representations of G in the context of earlier work of Fontaine and Laffaille, and we study
the restriction from Gk to Gg_ for representations arising from finite flat group schemes
over 0. This builds on ideas and results of Breuil.

We will have to use some background related to finite flat group schemes, such as the
concepts of Cartier duality and short exact sequence for finite flat group schemes; see Exercise
12.5.3 for an introduction to Cartier duality.

12.1. Divided powers and Grothendieck-Messing theory. Recall from §7.2 that clas-
sical Dieudonné theory classifies p-divisible groups over the perfect field k, and that Fontaine
developed a variant applicable to p-divisible groups over W(k) (subject to a connectedness
hypothesis when p = 2). We wish to allow ramification, which is to say we seek a classifi-
cation over 0. To do this, we will use Grothendieck-Messing theory as our starting point,
and to review this we begin with the concept of a divided power structure on an ideal in a
ring.

Definition 12.1.1. Let [ be an ideal in a commutative ring A. A PD-structure on [ is a
collection of maps

Yo o I — 1 n>0
such that the -, satisfy the “obvious” properties of t"/n! in characteristic zero:

(1) For all z € I, we have vo(z) = 1, v1(x) = x, and 7, (z) € I for n > 1.
(2) For all z,y € I and all n > 0,

@ +y) =Y wil@)y).

i+j=n

(3) If a € A and z € I then v,(azx) = a™y,(z) for all n > 0.
(4) For all z € I and all m,n > 0,

(m +n)!

Yo ()Y () =

(5) For all z € I and all m,n > 0,

(mn)!

Yn(m(T)) = ( Yomn ()

m!)mn!

Remark 12.1.2. The “PD” standard for puissances-divisée-literally “divided powers.” Note
that the combinatorial coefficients appearing in (4) and (5) are in fact integers and hence
can be viewed in a unique way as elements of A.

If I C Ais an ideal in a commutative ring that is equipped with a PD-structure {~,} then
for x € I we will often write 2" for v, (z).
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Ezample 12.1.3. It follows from (4) and (1) that n!y,(x) = 2" for all n and all x € I, so
when A is Z-flat there is at most one PD-structure on any ideal I of A: ~,(z) = 2" /n!. At
the other extreme, if A is a Z/NZ-algebra for some N > 1 and I C A admits a PD-structure
then 2% =0 for all z € I.

We say that a PD-structure {v,} on I is PD-nilpotent if the ideal I generated by all

[1“] -2l with > i, = n is zero for some (and hence all) sufficiently large n. This

products z
forces I = 0.

For I C Ok the maximal ideal, a PD-structure exists on [ if and only if the absolute
ramification index e satisfies e < p — 1. On the other hand, the ideal pOx always has a
PD-structure, as v,(py) = (p™/n!) - y™ with p"/n! € pZ,.

In general, there can be many choices of PD-structure {v,} on an ideal I.

FEzample 12.1.4. Recall that Ag.s is Z,-flat and comes equipped with a canonical surjec-
tion Agis — Oc,. The kernel of Fil' Ay of this surjection has a (necessarily unique)
PD-structure. Indeed, the analogous claim holds for A%. , and then passing to the p-adic

completion A.;s provides the desired PD-structure. (See Exercise 12.5.2.)

Theorem 12.1.5 (Grothendieck-Messing). Let Ay be a ring in which p is nilpotent and let
Gy be a p-divisible group over Agy. For any surjection h : A — Aq such that I := ker h s
endowed with a PD-structure {v,} and some power I wvanishes, there is attached a finite
locally free A-module
D(Go)(A4) = D(Go) (A — Ao, {7 })

with tka(D(Go)(A)) = ht Go. This association is contravariant in Goy and commutes with
PD-base change in A (i.e. base change that respects h and the divided power structure on
ker h).

The locally free Ag-module Lie(Gy) is naturally a quotient of D(Go)(Ao), and if {~,} is PD-
nilpotent then there is an equivalence of categories between the category of deformations of Gy
to A and the category of locally free quotients D(Go)(A) — & lifting D(Go)(Ag) — Lie(Gy).

Remarks 12.1.6. The classification of deformations at the end of the theorem can also be
formulated in terms of subbundles rather than quotients. Colloquially speaking, we may say
that in order to lift Gy through a nilpotent divided power thickening A of Ay, it is equivalent
to lift its Lie algebra to a locally free quotient of D(Gy)(A).

(1) The equivalence of categories at the end of the theorem associates to any deformation
G of G to A the module Lie(G), which is naturally a quotient of D(Gy)(A).

(2) This equivalence also works for deforming maps of p-divisible groups Gy — Hy. That
is, a map fy : Go — Hjy has at most one lift to a map f: G — H, and f exists if and
only if D(fo) : D(Go)(A) — D(Hp)(A) is compatible with the quotients associated
to the liftings G and H of Gy and Hj respectively.

(3) If p > 2 then p"/n! — 0 in Z,, whereas 2% /(27)! € 2Z5 for all j > 0. Tt follows
that the (unique) PD-structure on the ideal (p) in Z, is topologically PD-nilpotent
for p > 2 but not for p = 2. This is one reason why the case p = 2 is such a headache
in the crystalline theory. See Exercise 12.5.1.

(4) The right way to state Theorem 12.1.5 is to use the language of crystals. In this
terminology, D is a contravariant functor from the category of p-divisible groups over
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a base scheme S on which p is locally nilpotent to the category of crystals in locally
free O's-modules.

(5) By taking projective limits, the Grothendieck-Messing Theorem has an analogue for
Ap merely p-adically separated and complete (for example, Ag = Ok) and A — Ay
any surjection of p-adically separated and complete rings with kernel I C A that
is topologically nilpotent (resp. endowed with topologically PD-nilpotent divided
powers).

12.2. S-modules. In work of Breuil on finite flat group schemes and p-divisible groups over
Ok, a certain ring S plays a vital role. Breuil’s method began by studying finite flat group
schemes over O in terms of S-modules, and then gave a theory for p-divisible groups by
passage to the limit. Kisin provided an approach in the other direction, using Grothendieck—
Messing theory to derive Breuil’s description of p-divisible groups via S-modules without any
preliminary work at finite level, and then used this to deduce a classification for p-divisible
groups and finite flat group schemes with G-modules rather than S-modules. The possibility
of getting a classification with the simpler ring & in place of S had been conjectured in a
precise form by Breuil.

We now introduce Breuil’s ring S. Let W (k)[u] [%] .

>

over W(k)[u] by the set { E*/i!};>1 (this is the divided power envelope of W (k)[u] with respect
to the ideal F(u) - W(k)[u]). Clearly this ring is W(k)-flat. Further, there is an evident
surjective map

be the subring of Ky[u| generated
1

(12.2.1) W (k) [u] {ES‘)Ll O

defined via u + m. with kernel generated by all E?/i!. Let S be the p-adic completion of
W(k)[u] [@} g and let Fil' S C S be the ideal that is (topologically) generated by all
I

=

Ei/i!. We view S as a topological ring via its (separated and complete) p-adic topology.
The ring S is local and W(k)-flat (but not noetherian), and the map (12.2.1) induces an
isomorphism

S/Fill § —=0 .
Moreover, there is a unique continuous map g : S — S restricting to the Frobenius endo-
morphism of W (k) and satisfying s (u) = uP. Note that pg(Fil' S) C pS and ¢g mod pS =
Fl"ObS/pS.

The ideal Fil' S admits (topologically PD-nilpotent) divided powers, so for any p-divisible
group G over Ok with Cartier dual G* we get a finite free (as S is local) S-module

A(G) :=D(G")(S - Ok)

= lim D(G* mod p™)(S/p"'S — Ok [p" O)
N

with rkg . (G) = ht(G). Here, the kernel of S/pv'S — Ok /p" Ok is given the PD-structure
induced by that on Fil' S, and .#(G) is contravariant in G.
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Since the ideal
Fil' S + pS = ker(S — Ok /pOk)
is also equipped with topologically PD-nilpotent divided powers if p > 2, and the formation
of D is compatible with base change (i.e., it is a crystal), by setting Go = G mod p we also
have

AM(G) = D(Go)(S = Ok [pOk)

if p > 2. This shows, in particular, that .#Z(G) depends contravariantly functorially on Gg
if p > 2. With some more work (see [30, Lemma A.2]), for all p the S-module .#(G) can
naturally be made into an object of the following category that was introduced by Breuil.

Definition 12.2.1. Let BTfS be the category of finite free S-modules .# that are equipped
with an S-submodule Fil' .# C .# and a @g-semilinear map ¢, : Fil' ./ #4 — 4 such that
(1) (Fil' S) - .# C Fil' 4,
(2) the finitely generated S/ Fil' S ~ Ox-module .# / Fil' 4 is free,
(3) the subset ¢ 4(Fil' .#) spans .# over S.

Morphisms are S-module homomorphisms that are compatible with ¢ , and Fil'. A three-
term sequence of objects of BTfS is said to be a short exact sequence if the sequences of

S-modules and Fil'’s are both short exact.

Example 12.2.2. We give the two “canonical” examples of S-modules arising from p-divisible
groups over O via the functor .#. Both examples follow from unraveling definitions (in-
cluding the construction of the crystal D in terms of a universal vector extension).

For G = G;,[p*] = lim G, [p"] we have

M(G) =S, Fil' M (G)=TFil'S, and ¢ c) = % L Fil' S — S,

Meanwhile, for G = Q,/Z,, = lim #Z/Z we have
M(G)=S, Fil'M(G)=S, and ¢ uq =¢s:S— 5.

Ezample 12.2.3. The classical contravariant Dieudonné module of Gy = G mod 7 (equipped
with its .# and ¥ operators) can be recovered from . (G); for example, its underlying
W (k)-module is the scalar extension of .Z(G) along the map S — S/uS = W(k) followed
by scalar extension by the inverse of the Frobenius automorphism of W(k). In particular, G
is connected if and only if m — ¢ g ) (E(u)m) viewed on A (G)/u(G) is topologically
nilpotent for the p-adic topology. (This evaluation of ¢ 4 () makes sense since E(u)m €
(Fil'S) - . C Fil'.# for any .# in BT7s.) Thus, we say .# in BT, is connected if
m— ¢ 4 (E(u)m) on A /u# is topologically nilpotent for the p-adic topology.

Using results for p-torsion groups, Breuil proved (for p > 2) the following theorem classi-

fying p-divisible groups over 0.

Proposition 12.2.4. If p > 2 then the contravariant functor .4 from the category of p-
divisible groups over O to the category BTfS 1s an exact equivalence of categories with exact
quasi-inverse. The same statement holds for p = 2 working only with connected objects.
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Proof. For p > 2, one uses Grothendieck-Messing theory (Theorem 12.1.5) to “lift” from
Ok |70k to Ok /n" Ok, beginning with the analogous statement for p-divisible groups
over k as furnished by classical Dieudonné theory. For p = 2, one must adapt this method
using Zink’s theory of windows [32]. |

Lemma 12.2.5. If p > 2 then Homg , pi(A (G), Acris) s a finite free Z,-module, and there
is a natural Z,[Gk_]-linear isomorphism

TPG —:> HomS,gp,Fil(ﬂ(G)u Acris> .
The same holds for p = 2 provided that G is connected.

Proof. We only address the case p > 2. There is a unique map of W(k)-algebras S — Ags
such that u — [7] (and hence E’/i! € S maps to FE([7])"/i!). Since Gk acts trivially on
S and is equal to the isotropy subgroup of 7 € R (by definition of 7), this map is G-
equivariant. Furthermore, the diagram

S—>>ﬁK

!

Acris P) > ﬁCK

commutes, so by the “crystal” condition we have a natural isomorphism

(12.2.2) D(Gye, )(Aais) = D(G")(S) ®s Acis

Ocy

(1223) = %(G) X Acris~
Thus, since D(G) is covariant in G, we get a Z,-linear map

TPG = HomCK(Qp/ZP’ GCK) :HomﬁcK (QP/ZP> GﬁcK)

D(()*) \ .
22 Homa,,, (DGl )(Aerie) D(Gon[p™]) (Acis)
:Homs (%(G), Acris>

and one checks that this map lands in the submodule Homg , pi1 (A (G), Acris). Here, the last
equality above uses both the identification D(G,,,[p™])(Acris) = Aeris of Example 12.2.2 and
the isomorphism (12.2.3).

Since S — Auis 18 Gk -equivariant, the map

(1224) TpG - HomS,gp,Fil(%(G)u Acris>

thus obtained is Z, |G k__]-linear. When G = G,,,[p>] and p > 2, the map (12.2.4) is seen to be
an isomorphism by direct calculation, using Example 12.2.2 and the fact that Afrizsl’FiDO =7Zy;
this case of (12.2.4) is not an isomorphism if p = 2. Provided p > 2, combining this
special isomorphism with the Cartier duality between G and G* yields that (12.2.4) is an
isomorphism for any G when p > 2. (See Exercise 12.5.4 for a concrete manifestation of
this idea for using duality to establish an isomorphism.) The isomorphism claim for p = 2

requires more work. |
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12.3. From S to &. Let & = W(k)[u] be as in §10.4. We have a unique W (k)[ul-algebra
map & — S, and the diagram
W(R) g Acris

/]

&E——S5
commutes. Denote by ¢ : & — S the composite map

6 —S 9
and for any object 9 of Mod/“p6 define
M= S Ry, & .

If E-ht (M) < 1 then (see [30, 2.2.3]) .# can be naturally made into an object of BT7¢ for

p > 2 (and one has an analogue using Zink’s theory of windows when p = 2 if 9t is connected
in the sense that gy on 9 is topologically nilpotent). This motivates the following definition.

Definition 12.3.1. Denote by BT“/D6 the full subcategory of Mod“/o6 consisting of those G-
modules 91 that have F-height at most 1.

For p > 2 Breuil showed that the functor

BTY

7 BT

/S

M——->S Rp,& m
is exact and fully faithful; as before, when p = 2 one has an analogue for connected objects
M of BT%. By Proposition 12.2.4, we have an anti-equivalence of categories
BT7g<=— {p-divisible groups over O}

that is exact with exact quasi-inverse for p > 2 (and a similar result for p = 2 using connected
objects), so we get a contravariant and fully faithful functor

G: BT% —— {p-divisible groups over O}

when p > 2 (and a similar functor working with connected objects when p = 2). Using
Dieudonné theory over k, one shows that a 3-term complex in BT is short exact if and only
if its image under G is short exact.

Theorem 12.3.2. For p > 2, the functor G is an equivalence of categories. The same
statement holds for p = 2 if we work with connected objects.

Proof. We only discuss the case p > 2 (and the case p = 2 is treated in [32]). We will
construct a contravariant functor

M . {p-divisible groups over O} — BT76

for any p, and will show that this functor is quasi-inverse to G when p > 2.
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Since the Tate module V,(G) := T,,(G) ®z, Q, is an object of Repgips(GK) with Hodge-Tate
weights in {0, 1}, it is in the image of the functor
Vi s WAMELFIZ0 — RepG(G) -

cris °

Thus, using the fully faithful functor
é : W'aMF?FH)O(—) M0d75 ®Qp

of §11, corresponding to the representation V,(G) is an &-module 9, uniquely determined
by and functorial in G up to p-isogeny. Moreover, we have E-ht(9%) < 1. If h is the height
of G then by Lemma 11.2.10, the functor

Vs Modf6 —>Repfzr§e(GKoo)

induces a one to one correspondence between G -stable lattices L C V,,(G) with rank h and
objects 91 of Mod that are contained in .# := M ®e & and have G-rank h. Furthermore,
since the functor

Modfs —= Mod7, =~ Repq,(Gk..)

is fully faithful by Proposition 11.2.7, we see that 91 is functorial in and uniquely determined
by L. Taking L = T,(G) thus gives an object 9 of Modf6 with V(M) = T,(G); by our
discussion M is contravariant in G and we define

M(G) :=N.

To show that I 0 ( G ~ id for p > 2, one uses Lemma 12.2.5 to reduce to comparing
divisibility by p in 6" and A.;s; this comparison works if p > 2.

To show that G o 9 ~ id for p > 2, one must construct an isomorphism of p-divisible
groups. Using Tate’s Theorem 7.2.8, the crystalline property of the representations arising
from p-divisible groups, and the full-faithfulness of Repgips(G k) — Repq, (Gk..) (Corollary
11.3.1), one reduces this to a problem with Z,[G k__]-modules, again solved by Lemma 12.2.5.

[ |

12.4. Finite flat group schemes and strongly divisible lattices. For an isogeny f :

'y — I’y between p-divisible groups over O, ker f is a finite flat group scheme. Conversely,

Oort showed that every finite flat group scheme G over O arises in this way. (Raynaud

proved a stronger result, using abelian schemes instead of p-divisible groups [4, 3.1.1].) If

the Cartier dual G* is connected then we may arrange that I'} and I'; are connected as well.
The anti-equivalence of categories

BTf6 ~ {p-divisible groups over Ok}

of Theorem 12.3.2 for p > 2 and its “connected” analogue for p = 2 motivate the following
definition due to Breuil.

Definition 12.4.1. Let (Mod /&) be the category of pairs (9, pgy) in Modféor such that
E-ht(9M) < 1.
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We can also define the full subcategory of “connected” objects by requiring @gn to be
nilpotent.

Ezample 12.4.2. If 9 is an object of (Mod /&), then O ®e M is an object of Mod)y,

(Definition 3.1.1); indeed, the image of £ € & under the natural map & — Oy lands in 07
by Remark 11.1.1.

Objects in (Mod /&) are precisely cokernels of maps in BT76 that are isomorphisms in

the isogeny category, so (with more work for p = 2) we get the following result, which was
conjectured by Breuil and proved by him in some cases.

Theorem 12.4.3. Ifp > 2 then there is an anti-equivalence of categories between (Mod /&)
and the category of finite flat group schemes over Ok . Forp = 2, one has such an equivalence
working with connected objects in (Mod /&) and connected finite flat group schemes.

Remark 12.4.4. These equivalences are compatible with the ones for p-divisible groups. Thus,
if the finite flat group scheme G over Ok corresponds to the object M of (Mod /&), then
we have an isomorphism of G_-modules G(K) ~ Vi(9M), since the analogous statement
holds for p-divisible groups (as one sees via the proof of Theorem 12.3.2).

Definition 12.4.5. We say that an object T" of Rep'™(Gg) is flat (resp. connected) if
T ~ G(K) for some finite flat (resp. finite flat and connected) group scheme G over 0.

Corollary 12.4.6. The natural restriction functor
Rep' (Gg) —> Rep"™(Gk..)
is fully faithful on flat (respectively connected) representations if p > 2 (respectively p = 2).

Proof. This proof is due to Breuil. We only treat the cases p > 2. Using the equivalence of
categories Rep™ (G..) ~ Modggor via Dy, and V7 , and the fact that the diagram

Reptor(GK) Reptor(GKm>
G(K) T Vo, |~

finite flat group ~ ortor
{schemes over ﬁK} (12.4.3)(M0d /6) ()®e 05 Modyg,

commutes (due to Lemma 11.2.3 and Remark 12.4.4), it suffices to prove the following
statement. Let 77 and T be flat representations and let GG; and G be the corresponding
finite flat group schemes over Oy, so T} ~ G(K) and Ty ~ Go(K) (Definition 12.4.5).
Denote by 9t; and 9, the objects of (Mod /&) corresponding to G, G via Theorem 12.4.3
and let A; = OeQeM,; for i = 1,2 be the corresponding objects of Mod“gijor. Ifh:. # — M
is a morphism in Modg{:m then, after possibly modifying the 9t; without changing the generic
fibers (G;)x (so the Galois representations G;(K) remain unaffected), there is a morphism
My — My inducing h after extending scalars to O.

Due to Lemma 11.2.2, every object of (Mod /&) has a filtration with successive quotients
that are isomorphic to &;&/pS, so by a standard devissage we may restrict to the case that
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each 2M; is killed by p. In this situation, the natural map
M, —— Op @ M; = k((w)) @ppag M

is injective, so

93?’2 =My + h(mg) - %2
makes sense and is a p-stable (as h is g-equivariant) G-submodule of .#5. Moreover, 9, is
an object of (Mod /&) and so corresponds to a finite flat group scheme G, over 0. Since
My and M, are both g-stable lattices in .4, one shows that (G2)x ~ (G5) k. The map h
then restricts to a map A’ : 9, — MY, that induces h after extending scalars to Oyg; this is
the desired map. [ ]

Now we turn to strongly divisible lattices and Fontaine-Laffaille modules. For the remain-
der of this section, we assume that K = Ky and we take m =p, so £ = u — p.

Definition 12.4.7. Let D be an object of Y*MF%2""? with K = Ky. A strongly divisible
lattice in D is a W (k)-lattice L C D such that

(1) ¢p(LNFil' D) C p'D for all i > 0 (so ¢p(L) C L by taking i = 0),

(2) Zi>0p_i<pD(L NFil' D) = L.
We set Fil' L = L NFil' D, and we say that L is connected if ¢p : L — L is topologically
nilpotent for the p-adic topology.

Theorem 12.4.8. There are exact quasi-inverse anti-equivalences between the category of
strongly divisible lattices L with Fil¥ L = 0 and the category of Z,[Gk|-lattices A in crystalline
G i -representations with Hodge-Tate weights in the set {0,...,p — 1}.

Proof. Let V be a crystalline Gg-representation with Hodge-Tate weights in {0,...,p — 1}
and let A C V be a Gk-stable Z,-lattice. Because of Corollary 11.3.1 and Lemma 11.2.10,
the lattice A corresponds to a unique object M of Modjg such that Vig(9M) ~ A (as Gx..-
representations); moreover, 9 is functorial in A. Letting D := D!, (V), we have that
Fil’D = D and Fil’D = 0 due to the condition on the Hodge-Tate weights of the crystalline
representation V', and there is a natural injection
D 0 &, D~ 0 0 M— 5 [1] @s M,
so twisting by Frobenius defines a natural injection
D<= o (D)—> 8 [;] Do M= S M D P .

1®¢Dp

Viewing D as a Ky-submodule of S [ﬂ R e, M in this way, we define

1
L:=DN(5S®,sM) CS [—] R, M.
p

Clearly L is a p-stable W(k)-lattice in D. We claim that L is strongly divisible. Indeed,
this follows from the fact that p|los(E) in S and D = D, (V) with V crystalline. 3

cris

3need to say more



CMI SUMMER SCHOOL NOTES ON p-ADIC HODGE THEORY (PRELIMINARY VERSION) 195

Furthermore, one shows that the association A ~» L is exact by using the filtration bounds
(in {0,...,p —1}) to deduce that & as above induces an isomorphism L ~ 2t/ufN. 1

Conversely, let L be any strongly divisible lattice in an object D of Y-*MF }’}’Fll)o with
Fil’L := LNFil’D = 0 (so Fil’D = 0). Note that Fil’L = L since Fil’D = D. We set
A= HOIH%FH(L, Acris)~

This is a G k-stable lattice in the crystalline representation Vi,

shows that L ~~ A is exact and quasi-inverse to the other functor built above.

One shows that these associations are quasi-inverse. [ |

(D) with D = lg[l/p] One

We now wish to apply this theory to torsion representations. In order to do this, we need
a torsion replacement for strongly divisible lattices:

Definition 12.4.9. A Fontaine-Laffaille module over W (k) is a finite length W (k)-module
M equipped with a finite and separated decreasing filtration {Fil' M} and ¢-semilinear
endomorphisms ¢, : Fil' M — M such that
(1) the map ppitt : Fil'™ M — M coincides with the restriction of o}, to Filj' C Fil},,
(2) 3=, @iy (Fil' M) = M,
(3) Fi' M = M.
We say M is connected if @S, : M — M is nilpotent.

Example 12.4.10. If L is a strongly divisible lattice, then for each n > 0 we obtain a Fontaine-
Laffaille module M by setting M = L/p"L, taking Fil' M to be the image of Fil’ L under
the natural quotient map, and letting ¢, := p~“¢r. This is connected if and only if L is
connected.

More generally, if L/ — L is an isogeny of strongly divisible lattices, then L/L’ has a
natural structure of Fontaine-Laffaille module (and it is connected if L is connected).

Lemma 12.4.11. Let M be any Fontaine-Laffaille module with a one-step filtration (i.e.
there is some ig = 0 such that Fil' M = M for all i < iy and Fil' M = 0 for alli > ig). Then
there exists an isogeny of strongly divisible lattices L' — L with cokernel M. °©

By using such presentations and the functoriality and exactness properties of strongly
divisible lattices, we get:

Theorem 12.4.12. Consider the contravariant functor
M ~ HomFil,ap(Mu Acris ® (Qp/zp)>

from the category of Fontaine-Laffaille modules M with one-step filtration that satisfies
Fil> M = M and Fil’ M = 0 to the category of p-power torsion discrete Gr-modules. If
p > 2 this is an exact and fully faithful functor into the category ReptGOIr{ (i.e., image objects
are finite abelian groups). If p = 2, the same statement holds if one restricts to connected
Fontaine-Laffaille modules. 7

4need to say more
need to say more
Sshould sketch proof or give reference
"should sketch proof or give reference
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12.5. Exercises.

Ezercise 12.5.1. Verify the following assertions made about any PD-structure {~,} on an
ideal [ in a ring A.

(1) Prove that nly,(z) = 2™ for all n > 1.

(2) Prove that if A is a discrete valuation ring of mixed characteristic (0, p) and absolute
ramification index e (i.e., e is the normalized order of p), then its maximal ideal has a
PD-structure if and only if e < p—1, and this is PD-nilpotent if and only if e < p—1.
(This is why e = 1 and p = 2 is such a problem in the crystalline theory.)

(3) Give an example with I* = 0 for which there is more than one PD-structure on I,
but show that if I2 = 0 then defining 7, = 0 for all n > 2 defines a PD-structure on
I.

FEzercise 12.5.2. Let A be a Z,-flat ring and I an ideal which admits a divided power structure
(i.e., 2™ € n!l for all x € [ and n > 1). Let A denote the p-adic completion of A.

(1) Prove that A is Z,-flat, and give an example for which the map A — A is not
injective. R

(2) Prove that I - A admits a divided power structure. (There are general theorems in
the theory of divided powers that allow one to efficiently handle the interaction of
divided power structure with respect to extension rings, sums of ideals, etc. These
are needed beyond the Z-flat case.)

Exercise 12.5.3. Let G — S be a finite flat group schemes. In this exercise we develop the
important concept of Cartier dual which is akin to duality for finite abelian groups. To ease
the notation we will assume S = Spec R is affine and so G = Spec A. The interested reader
can work with quasi-coherent sheaves of Og-algebras to avoid this hypothesis.

Define the functor G¥ on R-algebras by GY(R') = Homp (Gr, (G,,)r) (the group of R'-
group homomorphisms from G to (G,,)r. We aim to prove this is representable by a finite
flat R-group. Beware that GY(R') is not the group Hom(G(R'), R”*) in general!

(1) In case G = (Z/nZ)g, show that GV is represented by the R-group pi,.

(2) If R =F, and G = «,, show that G¥(R') = 0 for any reduced ring R’ (e.g., any field)
but show that GV(F,[t]/(t?)) # 0.

(3) The R-group structure on A is encoded in a triple of R-linear maps e* : A — R,
m*: A— A®r A, and i* : A — A. Passing to R-linear duals (recall A is a locally
free R-module of constant finite rank), we get maps R — AY, AY @ AY — AV, and
AY — AY. Using that G is a commutative R-group, check that the first two of these
maps define a commutative R-algebra structure on AV, with identity element given
by the image of 1 under R — AY. Hence, now Spec(A") makes sense.

(4) Continuing with the previous part, show that dualizing the R-algebra structure maps
R — A (sending 1 to 1) and A ®zr A — A (multiplication) imposes exactly what is
needed to define a commutative R-group structure on Spec(A") (with the linear dual
of ¢* as the inversion).

(5) Describe concrete what an R'-group map Gr — (Gy,)r means, and identify this
with the group of R-points of the R-group you just constructed on Spec(AY). This
shows that GV is represented by a finite flat R-group.
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(6) Show that to give a bi-additive pairing of R-groups G x H — G, is the same as
to give an R-group map H — GV. Interpret this when H = GV, and contemplate
“double duality”.

Exercise 12.5.4. When trying to establish an integral comparison isomorphism, such as in
Lemma 12.2.5, it sometimes suffices to establish a compatibility with perfect dualities at the
integral level. Here is how it goes.

Let M, M' and N, N’ be pairs of finite free modules over a discrete valuation ring R, all
of the same positive rank, and there is given a pair of perfect R-bilinear duality pairings

MxM — R, NxN — R
Assume there are given R-linear maps L : M — N and L' : M’ — N’ such that the map of

sets L x L' : M x M'" — N x N’ is compatible with the perfect duality pairings. Prove that
L and L' are isomorphisms.
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Part IV. (p,I')-modules and applications
13. FOUNDATIONS

The theory of (¢, ')-modules is an improvement on the theory of étale p-modules from
§3. Recall that étale p-modules classify all p-adic representations of G for any field £ of
characteristic p. This may not sound interesting if our main goal is to understand represen-
tations of Gk, but it is incredibly useful. The link is that if we choose an auxiliary infinitely
ramified extension K /K of a special type (such as Ko, = K (fip>)) then the theory of norm
fields (which will be developed below from scratch in some basic cases of interest) provides a
canonically associated equicharacteristic p local field Ex_ (called the norm field of Ko /K)
for which the Galois theories of K, and Eg_ are the same. In particular, Gp = Gk__, so we
get a classification of p-adic representations of the closed subgroup Gg_ in Gg. The utility
of such a classification was seen in Part III.

When K. /K is infinitely ramified and Galois with Galois group I' isomorphic to Z, near
the identity, there is a theory of étale (¢, I')-modules which goes a step further and provides
a classification of all p-adic representations of the entire Galois group G, as well as all
G g-representations on finitely generated Z,-modules, in terms of semilinear data.

The theory of étale (¢, I')-modules was developed by Fontaine (][20], [13]) using the theory
of norm fields. It has many applications in p-adic Hodge theory and in the study of families of
p-adic representations, and it is a central tool in recent developments in the p-adic Langlands
correspondance for GLy. The aim of Part IV is to develop the ingredidents which make the
theory work. It rests on earlier results and methods of Tate, and so we will begin with a
discussion of Tate’s ideas, then turn to the theory of norm fields (which is largely independent
from our discussion of Tate’s work), and finally bring the two topics together to set up the
classification theory of G g-representations by means of étale (¢, I')-modules.

13.1. Ramification estimates. In Tate’s work on p-adic representations arising from p-
divisible groups over Ok (with an eye on the case of abelian varietes over K with good
reduction), a fundamental insight he had was that ramification in an infinitely ramified
Z,-extension K., /K can be rather precisely understood.

Example 13.1.1. Consider a 1-dimensional p-adic representation ¢ : Gx — Q,, and assume
that ¢ (Ik) is infinite; in other words, assume that the field K, /K corresponding to ker 1)
is infinitely ramified. By continuity, 1 (/) is a closed subgroup of Z). But it is infinite, so
it must be open in Z; (as Z,; near 1 is isomorphic to Z, near 0 as topological groups, due
to the p-adic exponential and logarithm maps, and all nontrivial closed subgroups of Z, are
open). Thus, Gal(K./K) = ¢(Gk) is an open subgroup of Z containing ¢(/x) with finite
index.

There is a natural rising tower of finite subextensions {K,} over K corresponding to
ker(y) mod p"), and K, = UK,,. (We will not be using the maximal unramified subextension
of K here, so there seems no risk of confusion with our notation K, = W(k)[1/p] used
elsewhere.) For example, if 1 is the p-adic cyclotomic character then K, = K((,n). Since
Z) and Z, are locally isomorphic near their identity elements and ¢)(Ix) contains 1 + N7,
for some large N, there is an ny with two properties: Ix, maps onto Gal(K/K,,), and



CMI SUMMER SCHOOL NOTES ON p-ADIC HODGE THEORY (PRELIMINARY VERSION) 199

Gal(Ko/Kp,) is identified with Z, carrying Gal(K«/K,) to p" ™Z, for all n > ny. In
other words, K,/ K,, is a totally ramified Z,-extension with layers K, /K,, for n > ny.

By using good estimates on ramification in the extensions K,/ K, Tate proved the following
intrinsic property of K., that may look like just a curiosity but is actually quite powerful
(as we shall see):

Theorem 13.1.2 (Tate). Let Ko/K be an infinitely ramified Galois extension such that
Gal(Kw/K) is isomorphic to Z, near the identity. For any finite extension M/K, the
image of the trace map Tryyk. : On — Ok, contains mg .

The key to the proof of this theorem is a result to the effect that the extension of valuation
rings Ok, — Oy is “almost étale”. In Exercise 13.7.1 we will explain the appropriateness
of this terminology.

Remark 13.1.3. Tate’s proof (which we will present below) rests on subtle arithmetic input
such as Serre’s geometric local class field theory and a detailed study of the higher ramifica-
tion filtration, Faltings found a much simpler proof that instead uses commutative algebra
(and so has the merit that it adapts to much more general settings, where it is a basic
tool in Faltings’ method for proving p-adic comparison isomorphisms involving p-adic coho-
mology theories). In Exercise 13.7.4 below, we outline Faltings’ proof. It must be stressed
that Tate’s method gives sharp ramification estimates that Faltings’ method does not, and
this is essential for some applications (such as developing the theory of (¢, ')-modules) and
underlies the powerful Tate-Sen method that we will explain and apply later.

Now we set the stage for Tate’s work. Let {K,},>0 be any increasing sequence of finite
Galois extensions of K inside of K, and define K., = UK,. (We will not be making use
of the maximal unramified extension of K, so there seems to be no risk of confusion with
our new meaning for Ky.) Define I' = Gal(K,/K). Assume there exists ng > 0 so that
for n > ng, K,/ K,, is totally ramified with Gal(K,,/K,,) ~ Z /p"~"° Z. This implies that
Ko /Ky, is Z,-extension that is totally ramified in the sense that all finite subextensions are
totally ramified over K,,. We allow anything to happen in the layer K, /K.

Ezample 13.1.4. Given any such tower {K,} over K, we can naturally make one over any
finite extension L/K inside of K by defining L, = K,L. The union L, of this tower is
K. L. (In the motivating example where K., corresponds to the kernel of an infinitely
ramified character ¢ of G, Ly corresponds to the kernel of ¢|¢,.) To see that this works,
we need to relate the layers over L with layers over K, and we will need to pass to large n
to eliminate the effect of overlap of L with K,, for some small n.

Let FF = LN K, so there is an ny, such that F' is contained in K, when n > n;. Hence,
L is linearly disjoint over F' from K., and K, for n > ny. In particular, L, = K., ®p L
and L, = K,, @ L for n > ny. Therefore, Gal(Ly /L) = Gal(K/F) is open in I (so it is
isomorphic to Z, near the identity and I, has open image in Gal(L/L)) and Gal(L, /L) =
Gal(K,/F) for n > ng. It follows that L. /L, is a totally ramified Z,-extension with
Gal(Ly,/Ly) = Gal(K,/K,) ~ Z/p”~"Z for n' > n > ng(L) := max(nz, ng).

In the preceding example, we inferred that Lo,/Lyyr) is a totally ramified Z,-extension
for sufficiently large ng(L) via a soft topological argument; we got no information on the
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precise amount of ramification in the layers Ly, /Ly,r). Moreover, although
L, =K, ®r L=K,®k, , (K ®r L) =K, ®xk, ., L)

for n > ny(L), so each layer L, /K, is obtained from the single layer L)/ Ky, ) via scalar
extension to K, (for n > ng(L)), it is not at all clear how ramification in L, /K,, behaves as
n — 0o.

Since the obstruction to perfectness of the trace pairing on valuation rings is encoded
in the discriminant ideal, and the discriminant in a finite extension of local fields is the
norm of the different ideal, we shall now study the behavior of v(Dy, /x,) and v(Dg, /x) =
v(Dk,/K,,) + 0(Dk,,/K) as n — oo, where Dy p denotes the different ideal [44, Ch. III].
The results we are after (Lemma 13.1.7, Lemma 13.1.10, Proposition 13.1.9, and Proposition
13.1.10) are insensitive to replacing K with any fixed K,,, so by making such a replacement
we may and do arrange that K. /K is a totally ramified Z,-extension. In particular, we
have I' := Gal(K/K) ~ Z, and Gal(K,,/K) ~T'/p"T' ~ Z /p" Z, so K,, is the fixed field of
p"I' on K, for all n > 0.

In Galois extensions, ramification is best understood via the ramification filtration. For
example, there is a formula for the valuation of the different in terms of orders of higher ram-
ification groups. Thus, let us briefly review some basic facts concerning higher ramification
groups for a finite Galois extension M /L of finite extensions of K inside of K. Let

{Gal(M/L)s}oz1, {Gal(M/L)"},>

respectively denote the filtration of Gal(M /L) by its ramification subgroups with the lower
and upper numberings [44, Ch. IV]. Essentially by definition, Gal(M/L), = Gal(M/L)%L/m @
where ¢/, is the Herbrand function. This function is the continous piecewise-linear self-
map of [—1,+00) whose slope on the interval (i — 1,7) is # Gal(M/L);/# Gal(M/L), for
all ¢ > 0 [44, Ch. IV, §3]. In particular, ¢pyr(z) = z for z € [—1,0] (so Gal(M/L)" =
Gal(M/L)y = I(M/L) is the inertia subgroup). The lower numbering is compatible with
subgroups, whereas the upper numbering is compatible with taking quotients [44, Ch. IV,
Prop. 4].

Since the ramification filtration with the upper numbering is compatible with passage to
quotients, for infinite Galois extensions M /L it makes sense to pass to the limit to define
a filtration {Gal(M/L)Y},>_1 of Gal(M/L) which induces the upper-numbering filtration
{Gal(M;/L)¥}),>—1 on Gal(M;/L) for every finite Galois subextension M;/L in M/L. By
construction the Gal(M /L)Y are closed subgroups of I', and NGal(M /L)Y = 1 (as can be
checked by passage to the case of finite extensions, where we can switch to the lower numbers
and see the vanishing of sufficiently high ramification groups). It is not obvious when the
Gal(M/L)Y should be open!

Ezxample 13.1.5. Consider the upper numbering filtration on I' = Gal(K«/K) ~ Z,. The
nontrivial closed subgroups of I' are p™I" for m > 0, but it isn’t a priori evident just from the
definitions whether or not we may have I'V = 0 for all large y. Since I'” is the inertia subgroup,
at least I'" is open! In general there is a monotonically increasing sequence {ym,}m>—1 in
[—1,00) such that y € (Ym—1,Ym] precisely when I'V = p™'I'. By the Hasse—Arf theorem [44,
Ch. 5, Thm. 1], the y,,,’s all are integers; they are called the “jumps” of the ramification
filtration.
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Beware that we are not claiming a priori that every p™I" actually arises as a I'Y. In fact, we
have y,,+1 = Ym precisely when it does not arise. Since NI'Y = {0}, we see that 'V stabilizes
for large y (and so is {0}) precisely when the sequence of integers {y,,} is eventually constant.
It is by no means obvious from the definitions if such terminal constancy cannot occur (and
it would occur if we worked with an unramified Z,-extension).

It turns out that in the above example the I'Y’s are open, which is to say y,, — co. In
fact, although the specific values y,, for small m are erratic, for large m we get some nice
explicit behavior thanks to class field theory:

Lemma 13.1.6. There exists mg = 0 such that y,,11 = ym + € for all m = mgy, where
e = e(K) is the absolute ramification degree of K.

Pmof.lhe ramification filtration within the inertia group Eo\is insensitive to replacing K
with K" (see Exercise 1.4.4), so we may replace K with K" to reduce to the case when
the residue field k is algebraically closed. In this situation, Serre’s geometric local class field
theory [41] may be applied: there is a surjective continuous reciprocity morphism r : 05 — T'
that carries maps the filtration {1+ m¥ };>; onto that given by {I'};>; (akin to the classical
case of ordinary local class field theory [44, Ch. 15, Cor. 3]). Since r must be a topological
quotient map, this shows that the I'"’s are open in I' ~ Z,,, and so are nontrivial for all 7. In
particular, y,, — oco. However, we still do not know that the y,,’s are pairwise distinct for
all large m (i.e., p™I" occurs as a I'Y for all large m).

For i > 2¢/(p — 1), the exponential map induces an isomorphism exp: mfy ~ 1 + m%..
Choose such an 4y and let p = r o exp: m%¢ — I' =~ Z,, so the image of p is open. We prefer
to work with p because it is “additive”. For m big enough (say m > myg), the jumps y,,
correspond to the jumps in the sequence {p(m%)}isi, of open subgroups of I'. Here we have
used that the y,,’s are actually integers, so the ramification groups I'* with ¢ € Z (which are
the ones described by class field theory) account for all subgroups I'V in T.

Let i > ip be a jump; that is, there exists m > mg such that p(mi) ¢ p™I and p(mi!) C
p™I'. By openness of the higher ramification groups in our case, we can increase m so that

p(m}}rl) = p™I". We want to show that the next jump occurs at exactly i+e; more specifically,
we will prove that p(my) = p™T for i +1 < j < i+ e and p(miFet) = p" T, Note that
mi Tt = pmit!. At this point all we can see is that p(m),) C p™T for j > i.

Pick a uniformizer m of K, so it is the root of an Eisenstein polynomial over W (k). This
gives
7€ pW(k)* +pr W(k) + - -+ pr P W(k),
so mie C pmi 4+ pmidt + o+ pmifeTl As p(pmjf'{) = pp(m]['{) C p™*I for j > i, and
plpmi) = pp(mg) ¢ p™F'T, we have p(mit®) ¢ p™H'I. Hence, p(mit®) = p™I, forcing
p(m).) = p™T for i < j < i+ e. On the other hand, since 7 € pOx we have p(mif*t!)

pp(mit) C pmHIT. Tt follows that the jump after i occurs at i + e, with p(m4et!) =
plpmift) = pp(mif") = p T u

The preceding lemma has the following somewhat technical consequence which will not
be used in the proof of Theorem 13.1.2 but will be invoked at the end of our later study of
norm fields (and so could have been postponed until the end of §13.3). We first recall our
standard notation that v is the valuation on Cg normalized by v(p) = 1.
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Lemma 13.1.7. For mg as in Lemma 13.1.6, there exists myg = mq such that

. 1
v((g —id)(t)) > 2 —1)

for allm > mg, all g € Gal(Ky41/Kyy), and allt € O, ,.

Proof. Let 7 be a topological generator of I'. For any m > 0, the group Gal(K,,;1/K,,) is
cyclic of order p and is generated by 77". We have to show that there exists mg > my such
that )

o(("" —id)(t) > 20— 1)

for all m > mg and all t € Ok, ;.

The successive quotients Gal(K,,4+1/K);/ Gal(K,11/K )41 are killed by p for ¢ > 1 [44,
Ch. IV, Cor 3|. As these are subquotients of I' >~ Z,,, they are either trivial or isomorphic
to Z /pZ. Since K,,,1/K is totally ramified, this conclusion also holds for ¢ = 0. Since
K,ni1/K is a totally ramified cyclic extension of degree p™*1, it follows that every subgroup
of Gal(K,,4+1/K) arises as a ramification subgroup. Hence, the slopes of the Herbrand
function ¢y,41 = ¢k, ,,/k (Which are the indices of the ramification groups in the inertia
group) range through precisely the values {1,p~',...,p7™'}. From the definition of y,, and
the compatibility of upper numbering with quotients, for the unique number z,, > 0 such

that ¢k, ,/k(Tm) is equal to the ramification jump value y,, we have
Gal(Km+1/K)xm = GaI(Km+1/K)yvrl — pml—\/pm+1r _ <7pm>‘

The lower numbering is defined in terms of the normalized valuation for the top field, and
since v(p) = 1 the normalized valuation on K, is ek, ., - v, where ek, | = e[Kp41 : K] =
ep™t! is the absolute ramification index of K,,,;. Thus, the above formula for the z,,th
lower-numbering ramification group says exactly that

epm+1v((7pm —id)(t)) Z xpm + 1

forallt € Ok, ,,

For n < m, the graph of the piecewise-linear continuous Herbrand function ¢,,.1 has slope
p~"! over the interval (2, 7,41) of x for which Gal(K,,1/K), = Gal(K,, 41 /K)?m1(@) =
Gal(K 1/ K)¥+'. Hence, if n < m then y,41 — yn = p " (py1 — T), SO

m—1

Tm = Tmyg + Z pn+1<yn+1 - yn)

n=mgo

for m > mg. But for m > mg we also have y,,11 = ym + €, due to how my was chosen (in

accordance with Lemma 13.1.6), so
pm _ pmo
Ty = Ty +EP- ————.
0 p p _ 1

If t € O,,., we therefore have

Tmg +1 pmotl

e p—1

o(37" —id)(1)) > ( P —
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It is therefore enough to choose myg such that

mo+1
‘xmo_'_l _p ‘p—mK—l < 1 ’
e p—1 2(p—1)
where on the left side we use the usual archimedean notion of absolute on Q. |
Ym+1
Ym|
Ym—1]

Tm—1 Im Tm+1

Returning to the task of estimating growth of relative differents in towers, the following
general integral formula for the ordinal of a different will be quite useful:

Lemma 13.1.8. Let M and L be finite extensions of K with L C M inside of K. Then

1 [~ 1
) =— | (1= ey )
@) = /_1 % Gal(M/L)yv )"
Keep in mind that v is normalized with v(p) = 1; it is generally not the normalized

valuation for M or L. This is why there is a factor 1/ey, in the formula, for example.

Proof. By [44, Ch. IV, Prop. 4], we have v(Dayy) = (1/en) Y;50(# Gal(M/L); — 1), with
the factor 1/ej; due to how we normalized v. This is trivially rewritten as a piecewise-linear
integral:
1 o
1

We now use change of variables to express this integral in terms of the upper numbering.
By definition of the Herbrand function, Gal(M/L), = Gal(M/L)*»/®) Since Gal(M/L),
is the inertia group, we have # Gal(M /L)y = en/eL.

For x not a corner point for ¢;/;, we have

/ o +# Gal(M/L)m
Py (T) = £ Gal(M/L)o
Thus, the change of variables y = ¢y, () yields:
L[~ Gal(M/L
V(@) = /_1 (# Gal(M/L) — 1)% dy
1 o0 1
g B G ervirrn)

dy

Our efforts finally pay off: we can prove that v(®g, k) grow linearly in n to very good
approximation:
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Proposition 13.1.9. There exist a constant ¢ and a bounded sequence {ay }n>o (all depending
on Ko /K) such that v(Dk, k) =n+c+p "a,.

Proof. By Lemma 13.1.8 applied to the extension K,,/K, we have

V@) = %/_T (1 - #Gal(;(n/K)y> dy

Compatibility of the upper numbering with quotients gives # Gal(K,,/K)¥ =T'Y/(TYNnp"T),
S0

A Y < Ym with 0 <m < n,
1 otherwise.
The integral therefore becomes the following sum:
1 - m—"n
(13.1.2) V(D) = - > W = Yyme)(1 =P
m=0

By Lemma 13.1.6, there is an integer myq such that y,,11 = ¥, + e for all m > my. Hence,
for n > mgy + 1 the formula (13.1.2) can be rewritten as:

mo n

1 m—n 1 m—n
v(Dk,/x) = o Z(ym — Ym-1)(1 —p"7") + o Z e(l—p™™")
m=0 m=mgo—+1
—n 10 mo+1—n
 Ymo— Y1 D —— R R
= - m;)p (W = ymr) + (n = mo) = =——
=n+c+p "a,
m mo_l
where ¢ = M—mole—i-p%l is independent of n and a,, = —ppil —é Z—:o P (Ym — Ym—1)-

For n < my define a,, = p"(v(Dx, x) —n —c). (Note that {a,} is constant for large n.) M

As another application of the integral formula in Lemma 13.1.8, we can show that the
v(Dp,/K,)’s are extremely small for any finite Galois extension L/K. This is the “almost
étale” step.

Lemma 13.1.10. Let L be a finite Galois extension of K, and define L, = LK,, forn > 0.
The sequence {p"v(Dr,/k,) fnx0 is bounded.

Proof. Arguing as in the discussion following Example 13.1.4, by replacing K with some K,
we can ensure that L is lineary disjoint from K., over K. That is, L, = K, ®x L for all
n > 0. Thus, Gal(L,/K) decomposes as a direct product:

Gal(L,/K) ~ Gal(K,/K) x Gal(L/K)

(where the projection to each factor is the natural quotient map, and so is compatible with
upper numbering filtrations).
By transitivity of the different and applying Lemma 13.1.8 to K,,/K and L, /K we have

1 [> 1 1
V(DL /k,) = (DL, k) —V(Dk,/k) = g/_l <# Gal(K, /K)Y N #Gal(Ln/K)y) dy.
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Choose h > 0 such that Gal(L/K)¥ = {1} for all y > h; such an h exists since Gal(L/K) is
finite. Hence, Gal(L,,/K)Y has trivial image in Gal(L/K), so the product decomposition for
Gal(L,/K) implies that Gal(L,/K)Y injects into Gal(K,/K). But its image in Gal(K,,/K)
is Gal(K,,/K)Y due to quotient compatibility of the upper numbering, so we conclude that
the natural map Gal(L,/K)? — Gal(K,/K)Y is an isomorphism for all y > h. In other
words, in the above integral formula for v(®y,/k, ) the integrand vanishes for y > h. Hence,
we can end the integration at h to get:

1 [h 1 1 1 [h dy
= — dy < - )
v xn) = / <# Gal(K,/K) # Gal(L, /K)y) S /_1 # Gal(K,/K)
The integrand was computed in (13.1.1), with an especially nice formula when y < v, so

by choosing ng large enough so that y,, > h (as we may certainly do) we can replace the
final integral over [—1, h] with the analogous integral over [—1,y,,] and use (13.1.1) to get

1 no o p_n o
(DL, /k,) < e Z(y ~ Ym-1)P Z — Ym—1)P
m=0
Hence, p"v(®y,/k,) is bounded, as we claimed. |

Now we can finally prove Theorem 13.1.2:

Proof. Since the trace is transitive, we may enlarge M so that M/K, is Galois. Replacing
K by some K,,, we may arrange that K, /K is a totally ramified Z,-extension, and there is a
large n and a finite Galois extension L/K, inside of M such that M = LK. (To find L/K,,
for some large n, we “descend” M/K; see Exercise 13.7.2 below for a systematic treatment
of “descending” structures over K, to structures over K, for some large n.) Replacing K
by such a K,, with n also large enough so that K, contains the finite extension L N K. of
K, we can ensure that L/K is not only finite Galois but also linearly disjoint over K from
all K,, and K. Hence,

M:Loo: oo®KL:Koo®Km (Km®KL):Koo®KmLm

for all m > 0. By Lemma 13.1.10 (!), we have v(®y,/k,) = p "¢, where {c,}n>0 is a
bounded sequence.
Now pick a € mg__, so a € K, for some n. Hence, for all m > n we can write a0k, = m“”
where i,, > 1. Note that i, = p™"i, for m > n (because K,,/K, is totally ramified), s
im — 00. By [44, Ch. III, Prop. 7], we have
Ter/Km (m‘im> - mi[{m A m‘im - ml[{m@Z:‘L/Km
e Jd s 1
€Lm/Kn€P™  ep™  p™
<:>j 2 eLm/Km(i — €Cm).

In particular, Try,, /. (OL,.) = m%c’"J Since {¢, }m>o is bounded and i, — oo, there exists

m > 0 such that i,, > ec,,. It follows that o € Try, /k, (O, ). But we arranged a linear
disjointness property: M = K ®g, L,. Hence, by compatibility of ring-theoretic trace
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with respect to extension of scalars, we see that Try, /., () = Trayyx. (x) for all z € Oy,
This proves o € Tra i (Oum). [

13.2. Perfect norm fields. The theory of norm fields is due to Fontaine and Wintenberger
([24], [51], [13, §4]). It sets up an equivalence of categories between the category of finite
extensions of certain infinitely ramified extensions of a p-adic field and the category of finite
separable extensions of an associated discretely-valued field of characteristic p (see Theorem
13.4.3).

There are two sides to the story: perfect norm fields and imperfect norm fields. We have
already seen examples of each, without recognizing them as such (since the concept of a
norm field has not yet been defined): the field Frac(R) from Theorem 4.3.5 is an example
of a perfect norm field and the field k((u)) that arose in §11.1 in a somewhat explicit form
is an example of an imperfect norm field. In neither of those cases did we see any “norms”,
nor did the constructions of those two fields look similar at all. Once we have explained how
the norm field constructions work, we will recover both of these earlier classes of fields from
a common point of view.

The case of perfect norm fields is somewhat easier to understand, as it amounts to just
some simple generalizations of the work we did already in our study of R and Frac(R) in
§4.3. Hence, we discuss this case first, and then (in §13.3) turn our attention to the imperfect
norm fields. Both cases will be useful in the development of the theory of (¢, [')-modules.

Remark 13.2.1. We are now going to have to make extensive use of W(k)[1/p], as well as
layers K, of K, /K. Hence, to avoid confusion about the meaning of Ky, we now write Fj
to denote W(k)[1/p].

Let L/F, be an extension (not necessarily of finite degree) contained in K. Fix a proper
ideal a in &, that contains p and for which powers of a cut out the p-adic topology (i.e.,
a¥ C p0y, for some N > 1); this rules out taking @ = m; when L = K, for example.

Consider the inverse limit !iLn@O 01, /a of F,-algebras using the transition maps = +— a?.
This is the universal perfection Ry := R(€/a) from (4.2.1), so by Proposition 4.3.1 it is the
same as R(0y,/(p)). For L = K it recovers the ring R that was studied in §4.3.

If ﬁL denotes the valuation rlng of the completion L of L (i.e., it is the p-adic comple-
tion of &) then O /pO; = ﬁL/pﬁL, so Proposition 4.3.1 apphed to O}, gives a natural
multiplicative identification

(13.2.1) Ry ={(") e [ Oc] (2"V) =2 for all n > 0.}
n=0

In what follows we will make frequent use of this identification. In particular, for x € R we
write (™ to denote the nth component of the corresponding p-power compatible sequence

in gL-
The formula in (13.2.1) is functorial with respect to inclusions L C L’ among extensions
of F inside of K, via the natural injective map
Ry, = R(0L/p0L) — R(OL [pO1) = Ry

In this way we may and do identify all R;’s with subrings of Rz = R.
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Recall that vg on Frac(R) satisfies vg((2™),50) := v(2(®), and this makes R the valuation
ring for vg on Frac(R). There is a similar result in general:

Lemma 13.2.2. Let L C K be a subfield containing Fy = W (k)[1/p], and let k' be its residue
field inside of k. Then Ry, is the valuation ring in Frac(Ry) relative to the restriction of the
valuation vg on Frac(R), and its residue field is k'. In particular, the Ry’s are mormal
domains.

Beware that vy may have trivial restriction to Ry, which is to say that Ry is a field
(equivalently, k' = Ry). By Exercise 13.7.3(2), this happens whenever [L : Fp) is finite.

Proof. Expressing elements of Frac(Ry) as ratios of elements of Ry, we have to show that if
x,y € R,—{0} and z|y in Ry then x|y in Ry. Passing to p-power compatible sequences in 0,
respects multiplication, and so reduces the assertion to the evident claim that a divisibility
condition a|b in &}, may be checked in O¢,,.

To compute the residue field, we observe that the natural map Ry, — 0 /(p) — k' defined
by z — 2 mod m;, is a surjective ring map; this follows from the definition of R; and the
perfectness of k' [ ]

Since each Ry is perfect by construction, the corresponding fraction fields Frac(Ry) are
also perfect. In Lemma 4.3.3 we proved that R = Ry is vg-adically separated and complete,
so it is also w-adically separated and complete for any w € mgr — {0}.

The vg-adic topology on R = Ry matches its subspace topology from the product topology
on [],,59 Ocy (using the description of R via p-power compatible sequences (™) 50 in O, ).
Hence, each Ry, is complete for the restriction of vg since o 1 is closed in O¢, . In particular,
Ry, is w-adically separated and complete for any w € mg, — {0}, and Frac(Ry) is complete
for the vr-adic topology.

Definition 13.2.3. The perfect norm field attached to L is Frac(Ry).

So far we have not mentioned any actual norms. When we construct the imperfect norm
field attached to a finite extension M of K, (for which we will see some norms), its perfect
closure will turn out to be dense in the perfect norm field Frac(Ry,) (thereby explaining the
name “perfect norm field”).

Consider the natural action by Gg, on Frac(R) that preserves vg. For any closed subgroup

H and corresponding subfield L = FH, H acts trivially on the perfect norm field Frac(Rp)
since H acts trivially on &';,. We can do better:

Proposition 13.2.4. For any closed subgroup H C G, with corresponding fizved field L =
K", RY = R;, and Frac(R)" = Frac(Ry).
Proof. Using the identification
R={(z") ¢ H %CK | (V)P = 2 for all n > 0}
n=0

we may pass to H-invariants to get that R is computed by the same formula as R except
with g, replaced with 0F = Ocu = O (see Proposition 2.1.2). But 07 = 0, so we
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have proved R¥ = R; inside of R. Since R and R, are each valuation rings within their
fraction fields for the same rank-1 valuation vz on R, provided that vg is nontrivial on Ry,
(i.e., Ry is not a field) we can invert a single non-unit in Ry to get the desired equality at
the level of fraction fields.

Now consider the case when Ry is a field. In this case, if z € Frac(R)? we have to show
that x € R. If not then 1/x € R, so 1/x € R = R with Ry a field. This forces x € R, C R
as well, contradicting the assumption that x ¢ R. |

Consider the valuation vg on Frac(R) from Lemma 4.3.3 that makes Frac(R) complete
with valuation ring R. The action of Gg, on Frac(R) leaves this valuation invariant, so the
G p,-action is continuous for the vg-adic topology. This is akin to the fact that the G g, -action
on Og, is continuous for the p-adic topology.

Remark 13.2.5. Beware that the action by Gg, on R and Frac(R) is not continuous for the
discrete topology on these rings. There are two ways to see this. First, the natural surjective
multiplicative map R — Oc, defined by z +— z(©) respects the absolute values and G-
actions, so it suffices to show that the Gy -action on ¢, does not have open stabilizers.
By Proposition 2.1.2, for any open subgroup H C G, the corresponding field of invariants

C!L is the finite extension K of Fy, so any element of Cg not in K has non-open stabilizer;
such elements exist since K is not complete [8, 3.4.3/1].

Another way to see the G -action on R is not continuous for the discrete topology is to
exhibit an explicit element with non-open stabilizer. For example, the nontrivial element
£ € 1+ mp from Example 4.3.4 satisfies g(¢) = X9 for ¢ € Gg,. Since 1 + mp with its
natural Z,-module structure is torsion-free (as char(R) = p), for a,a’ € Z, we see that
£ = ¢ if and only if a = o/. Hence, g(¢) = ¢ if and only if y(g) = 1. Since x does not have
open kernel, G, does not act on € with an open kernel.

We can finally relate the Galois theory of an infinitely ramified extension of K to the Galois
theory of a field of characteristic p, namely its associated perfect norm field. Our analysis
will rest on an input from the theory of imperfect norm fields, so we give part of the proof
now and then finish it later (see Corollary 13.3.12); the reader can check that no circular
reasoning is involved. We fix an infinitely ramified Galois extension K., /K satisfying the
properties given in the discussion immediately preceding Example 13.1.4.

Proposition 13.2.6. Let M, and M, be finite extensions of K., inside of K, and assume
that My C M. The associated extension of perfect norm fields Frac(Ryy, ) /Frac(Ryy,) inside
of Frac(R) is finite separable of degree [M; : Ms).

If My /M, is Galois then the natural action of Gg, on Frac(R) induces an isomorphism

Gal(M;/M,) ~ Gal(Frac(Ryy, )/ Frac(Ryy)-

The key to this proposition is that there is no “degree collapsing” when passing from M
to Frac(Rys). This rests crucially on the fact that we work with fields M with infinite p-part
in their ramification; see Exercise 13.7.3. Also, note that the corollary does not say that
every finite (necessarily separable) extension of Frac(Rg_, ) inside of the algebraically closed
field Frac(R) has the form Frac(Ry;) for some finite extension M /K., inside of K. To get
such an equivalence of Galois theories we will pass to imperfect norm fields in §13.4.
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Proof. Since the Frac(Ry;)’s are perfect, all extensions among them are separable. To prove
that Frac(Ryy,) is finite over Frac(Ry,) with degree [M; : M,], choose a finite extension
My/M, in K such that My/M, is Galois. Since Frac(R,s) is an intermediate field in the
extension Frac(Ryy, )/ Frac(Ryy,), it suffices to settle the Galois part of the claim (as we can
then apply it to both My/M; and My/Ms). Hence, we now may and do assume that M; /M,
is Galois.

Let H; = Gal(K /M;), so Hy/ H, is naturally identified with Gal(M,;/M,). By Proposition
13.2.4, we have Frac(R)i = Frac(Ryy,), and G, naturally acts on Frac(Ry,) via the G, -
action on the finite Galois extension M;/Fy. Under this action H; acts trivially, so there is a
natural action by Hy/H; on Frac(Ryy, ), and under the identification Hy/H; = Gal(M; /M)
this is the natural action induced by Gal(M;/Ms). Hence,

Frac(Ryy, )% M /M2) — Frac(Ryy, )*2/ = (Frac(R)™) 2/ = Frac(R)™ = Frac(Ray,).

By Artin’s lemma, if F' is any abstract field equipped with an action by a finite group G,
then F is finite Galois over the subfield F'“ of G-invariants and the image of G in Aut(F) is
Gal(F/F%). Applying this with F' = Frac(Ryy, ), we conclude that Frac(Ryy, )/ Frac(Ryy,) is
indeed a finite Galois extension and that Gal(M; /M) maps onto its Galois group. The only
remaining problem is to prove that this surjective map of groups is an isomorphism, which
is to say that if ¢ € Gal(M;/M,) acts trivially on Ry, then g = 1. This will be proved in
Corollary 13.3.12. [ |

13.3. Imperfect fields of norms: construction. The theory of imperfect norm fields aims
to describe the Galois theory of an infinitely ramified Galois extension K., /K inside of K
of the type considered in the discussion immediately preceding Example 13.1.4. (Actually,
the general theory as in [51] handles a much larger class of infinitely ramified extensions
K /K, namely those whose Galois closure has Galois group with the property that the
higher ramification groups are all open; these are called arithmetically profinite extensions,
and a theorem of Sen shows that this openness holds when the Galois group is a p-adic
Lie group and has open inertia subgroup. This generality is important in work of Breuil
and Kisin, which uses non-Galois extensions obtained by adjoining a compatible system of
p-power roots of a uniformizer 7, as in the integral p-adic Hodge theory in Part III.)

We now fix such an extension K, /K, and recall that it comes equipped with an exhaustive
rising tower of finite Galois subextensions K, /K (n > 0) such that for some ng > 0 each
extension K,/K,, is totally ramified and cyclic of degree p"~™ for all n > ng. We let
I' = Gal(K«/K), and note that the open normal subgroup Gal(K/K,,) is topologically
isomorphic to Z,. Since we are most interested in the case K, = K (pup~) (as in the discussion
at the beginning of §13.1), we definitely do not assume that ny = 0, nor do we assume that
I' has no nontrivial p-torsion (as we want to allow K = Q, with p = 2). We also do not
assume [ is abelian, though this is not important for the applications we will give.

We fix a finite extension M /K., inside of K, and aim to associate to this an “imperfect
norm field” inside of Frac(R). This will proceed by using a “finite approximation”. That
is, we choose a finite extension L/K such that M = LK., and we define L, = LK, for
all n > 0 and Lo, = LK, = M. By Example 13.1.4, the tower {L,,/L},>o satisfies the
same axioms as {K,/K}. In particular, there is an ng(L) such that L../Ly, ) is a totally
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ramified Z,-extension with each L, /Ly 1) of degree p" ") for n > ny(L). This ng(L) will
be fixed throughout what follows (and we write ny to denote ng(K)). Our construction of
the imperfect norm field Ey; C Frac(R) attached to M will use the tower {L,}, but in the
end we will check that E,; is independent of the initial choice of L.

Much like perfect norm fields, the imperfect norm field associated to M will be the fraction
field of a certain complete valuation ring inside of R. It will have perfect closure that is dense
in Frac(Rys), so the construction of its valuation ring will be given inside of R),.

Our first lemma begins to show why we use the terminology “norm fields” (and the com-
plete justification will be given in Lemma 13.7.5).

Lemma 13.3.1. There exist an integer ny, > 0 and a proper ideal ay, in ﬁL(nL) containing p
and cutting out the p-adic topology such that

Ni, /e, (x) =2 mod arly, .,
forallz € O, and alln > ny,.
Proof. Applying Lemma 13.1.7 to the totally ramified Z,-extension L /Ln, (1), there is an
integer ny, > ng(L) such that for all n > n; we have
1

U((g - 1d)($)) = m

for all z € 0y, and all g € Gal(L,41/Ly,). Since Loo/Lny(r) is a totally ramified Z,-
extension, by increasing n; enough we can arrange that there is an element y € 0y, such

that 0 < v(y) < ﬁ. Take a;, = yOp, . Then for all n > ny and all z € 0p,,,, we have
NLn+1/Ln (x) = H g(x) = zp mOd aLﬁLn+1'
gEGal(Ln+1/L7l)
[

Remark 13.3.2. In what follows, we always take ny big enough as in the preceding proof
with np > ng(L) as well, so Lo /L,, is a totally ramified Z,-extension.

Lemma 13.3.1 shows that by working at the level of the finite extensions L, /L we can
relate p-power compatible sequences to norms at finite layer L, /L, far up in the tower of
finite subextensions of L., /L. More specifically, by Proposition 4.3.1 we have

Rp. =R(O../a10L.) ={(x,) € [[(Or./arOL.) |28,y =z, for all n},
n>0

and Lemma 13.3.1 says that if n > ny then the composite map

NLn+1/Ln
(1331) ﬁLn+l — ﬁLn - ﬁLn/aLﬁLn — ﬁLnJrl/ClLﬁL

n+1

is a factorization of x + 2 mod a0, ;.

Definition 13.3.3. The ring E; C Ry is the subring of p-power compatible sequences
(n)n>o such that z,, € 0, = Opk, for sufficiently large n.
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From the definition, we see that E} is a local domain of characteristic p (its units are
elements which are units in Ry_ ). In view of the factorization (13.3.1) of the p-power map
in terms of a norm, the condition in this definition actually forces z,, € 0, for alln > ng
and (2, )n>n, is even “norm-compatible”. Due to the closedness of 0, in 0 L. foralln > ng
it follows that E} is closed in Ry, so it is complete for the vg-adic topology. Note that
we have not yet exhibited any nontrivial elements of Ry beyond those coming from the
residue field! Since we cannot expect to extract arbitrary p-power roots of elements of 07p,__,
in contrast with &%, for general K, it is not obvious at all how to make interesting elements
of Ry (aside from special cases such as Ko, = K(jy~) for which we have ¢ € Rk, ). In
Lemma 13.3.6 we will make many interesting elements of EJ .

Remark 13.3.4. The reason for the notation E} is as follows: the “+” refers to the fact that
this is a domain sitting inside of another ring of interest to be obtained by inverting a single
distinguished element (much as we get Byr from Bj;, Beis from Bl and By from BJ).
In fact it will turn out to be a discrete valuation ring, so inverting any nonzero non-unit
will yields its fraction field (to be called Ep). The “E” refers to the fact that it is a ring of

characteristic p (much like & and E from §3).

Now we check that the subring Ef in Ry only depends on L., rather than on L inside
of K. Indeed, if L' C K is another subextension of K /K finite over K such that L/ = L.,
then there exist m,m’ > 0 such that L ¢ L! , = L'K,,, and L' C L,, = LK,,, so for all
n > max(m,m’) we have

L, =LK, = (LK)K, 2 'K, = L., L = 'K, = (L'Kyw)K, 2 LK, = Lb,.

Since the definition of E} only depends on the L,’s for large n, we get the asserted indepen-
dence of L. Hence, the following definition (which is elaborated upon in Exercise 13.7.5) is
well-posed:

Definition 13.3.5. Let M/K,, be a finite extension, and choose a finite extension L/K
inside of M such that M = LK., = L. Then define Ef, := E} inside of R = Ry. The
fraction field Ey; = Frac(E},) is called the field of norms of M relative to K. /K. (We also
denote it as Er.)

Whereas the valuation rings of the perfect norm fields are never noetherian in interesting
cases, the characteristic p local domain E] turns out to always be a complete discrete
valuation ring. To analyze the structure of the rings Ef, we need to find a uniformizer. The
obvious strategy is to look for a compatible sequence of uniformizers in the L,’s for large n
and to show that it “works”. This is what we will do.

Choose n > ny, so Lyy1/L, is totally ramified and hence any uniformizer of L,,; has
norm in L, that is a uniformizer of L,. As Exercise 13.7.5 shows, we essentially need to
go in the other direction: work our way up the tower to build a norm-compatible sequence
(for large n). Actually, rather than working with norms, we can stick with the condition of
p-power compatible sequences in the &y, /a0y, s for large n, which is how we defined E7.
It is not at all obvious how to find such sequences. Finding a p-power compatible sequence
of uniformizers taken modulo a; comes down to some clever algebra:
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Lemma 13.3.6. For any n > ng and uniformizer wr, of L,, there exists a uniformizer
P J—
Thpsr Of Lyt such that mp =, mod a0y, ,,.

Proof. First pick a uniformizer m of L,41, so Ny, /r,(7) is a uniformizer of L,, (as Lyp41/Ln
is totally ramified, since n > nr). Thus, the 7, -adic expansion of N, ./, (7) has vanishing
constant term. Letting k' denote the common residue field &k, of all L,,’s for m > np, we
get Teichmiiller coefficients {a;};>1 in &’ such that
NLn+1/Ln (ﬂ-) = Z[ai]WZLn>
i=1
and a; # 0 since N, /1, (7) is a uniformizer of L.

The uniformizer 7L, that we seek to construct in L, ; must have a m-adic expansion
> 121 [bj]m? for some sequence {b;};>1 in k" to be constructed (with b; # 0). Working modulo
a0, .., since p € ar, we use the property of az, from Lemma 13.3.1 to compute that modulo
a0, ., we have,

W’inﬂzi[bﬂﬂm = i[bﬂ<§:[ai]ﬂin)j
= i ([bi;';l][al]erm l[bf] j(lad], ---7[am]))7fﬁ mod a.07,,,,

3
ﬂ.
I

J

for some P, ; € Z[X;,...,X,,]. Since a; # 0 and k' is perfect, we can find {b,,}m>1 in &'
solving the infinite system of equations

bay + Z VP j(ay, ..., am) = 0m

(where 0,,,1 is the Kronecker symbol), noting that for m = 1 we get by = al_l/p # 0. This
defines a uniformizer 7, ,, such that 7} =g, mod ar0r,,,. [

Now fix a uniformizer 7y, —of L,,. By Lemma 13.3.6 we can inductively construct a se-
quence {7r,, }n>n, of uniformizers in the L,’s forn > np such that 7y =z, mod ar0r,,,
for all n > ny. To fill in the missing values for n < np, we proceed as in Exercise 13.7.5 by

7L L—n

defining 7y, = 7TL in mz,, . (This may fail to lie in L, let alone to be a uniformizer of

L,, forn <ng.) The sequence Ty, := (7r, )0 is an element of E}. It depends on the specific
choice of 7z, s for all n > np, but for our needs it is safe to use the suggestive notation 7.

What is vg(7L)? Recall that by definition, for any ideal a C O¢, cutting out the p-adic
topology and for any = = (z,) € R(Oc,/a) = R, 29 = lim7?" in Og, for an arbitrary
choice of lifts &, € O¢,. of x, for all n > 0 (no p-power compatibility requirement!). Hence,
for x = 7, we can take T, = m, for large n, so

vr(TL) = v(ﬁ(LO)) = lim p"v(mp,).

But for n > ny the extension L,/L,, is totally ramified of degree p"~"L, so v(m,) =
v(mp,, )/p"~"t. Hence, for n > ny we see that the number p"v(rz,) > 0 is independent of
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n. In other words:
n,

b
e(Ln,)
Our goal is to show that E] is a complete discrete valuation ring with 7, as a uniformizer.

Example 13.3.7. Consider L = Ky = W(k)[1/p], Koo = Ko(ptp=), and K,, = Ko((n).
We then have v(mg,) = 1/p"'(p — 1) for any uniformizer 7g, of K, for any n > 0, so
vr(TK,) =p/(p—1) > 0.

More specifically, in this case we can actually write down an explicit norm-compatible
system of uniformizers at all levels: 7g, = (n — 1 for n > 1. Viewed as a sequence in
the ring O%/(p), we see that this corresponds to ¢ — 1 € R(O%) = R, so the norm field
Eko(ue) admits ¢ — 1 as a uniformizer. (Recall that in Example 4.3.4 we directly checked
that vg(e — 1) = p/(p — 1) for all p, including p = 2.)

> 0.

vp(TL) = p*u(me,, ) =

Since vg(7r) > 0, the Ty-adic topology on R is equal to vg-adic topology with respect
to which R is separated and complete. Since E7 is closed in R for the vg-adic topology, it
follows that E] is separated and complete for the 7r-adic topology. We have not yet proved
that the 7-adic topology on E} is as fine as the vg-adic one; this will be easy to see once
we show that Ef is an equicharacteristic complete discrete valuation ring with uniformizer
Tr,.

To work out the structure of the characteristic p local domain E7 , since we have a candidate
for a uniformizer we should next determine its residue field. Since Lo /Ly, is totally
ramified (in the sense that all finite subextensions are totally ramified over L)), the
residue field k;_ of & is the same as that of & Lo (1) this is a finite extension &’ of k, and
it coincides with the residue field of &, for all n > no(L). We therefore have W(k') C 07,
for all n > ng(L), so k' = W(k")/(p) is naturally a subfield of &, /a; 0y, for all n > ng(L).
Since k' is perfect, using p-power transition maps thereby identifies &' with a subring of
E}. (In more concrete terms, we have just shown that Ef as a subring of the k-algebra R
contains £’; see 4.2.3.) In view of the 7T -adic separatedness and completeness of E}, we now
get a unique kj__-algebra map

QLI kLoo[[X]] — Ez_
carrying X to 7r, and it is continuous for the X-adic and 7-adic topologies. Since E; is

a domain and 6 (7y) # 0, it is clear that 6, is injective (due to the structure of ideals in
kr..[X]). Even better:

Proposition 13.3.8. The map 0y, is an isomorphism. In particular, Ef — R is a local map
of valuation rings, so a pair of nonzero elements x,y € E} satisfy x|y in E if and only if

vr() = vr(y).

This proposition implies that the vg-adic topology on Ef is the same as the 7-adic
topology, and that the norm field Ej, is exactly Ef[1/7] inside of Frac(Ry_.).

Proof. Let k' = ki, and choose n > ny. We have k;, = k', so 01, = W(K')[r,]. Let e,
denote the absolute ranification index of L, and 0, = v(ay) € (1/e,, )Z=o, S0 since p € ay,
we have O, /a0, =k [ﬂ'Ln]/(ﬂ'ZlfL). Since L,,/L,, is totally ramified of degree p" ", we
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have e, = p"~"Fe,,. Thus, there is a unique isomorphism
Opn: K [X0] /(X2 "0) — O, a0,

satisfying X,, + w7, and 0 ,(a) = a? " for all a € k' (where ¢;, = €,,0;, € Zsg is an
integer).

It is straightforward to verify (with the help of Lemma 13.3.1 and Lemma 13.3.6) the
commutativity of the diagram

7L+17nLCL pr,

F[ Xl /(X7 ) —= K [Xa] /(X5 7er)

0L,n+1l/§ ’iteLyn

fn
ﬁLn+1 /aL ﬁLn+1 ﬁLn/aL ﬁLn

where f,, is the p-power map and pr,, is the map of k’-algebras sending X, to X,,. Passing
to the inverse limit yields an isomorphism of rings

liﬁl 9[,7”3 k‘/[[X]]Z 1&1 ﬁLn/aLﬁLn

n>nr, nz>ny,

mapping X = lim X, to T, = lim 7, . This map is 0 precisely because of how

—n>ny, —n>ny,
the k’-algebra structure on E} is defined (using compatible p-power root extractions in &’
exactly as with the definition of the maps 0y, ,|x). [ |

n*

In the setting of the cyclotomic extension as in Example 13.3.7 (with K = W(k)[1/p]), we
conclude that the uniformizers in E}m are precisely the elements with vg-valuation equal to

p/(p—1).

Remark 13.3.9. Since vg restricts to a multiple of the normalized valuation on the discretely-
valued field Ey, it follows that if L//L is a finite extension inside of K (with L finite over
W(k)[1/p]) then vg(7y) = vr(TL)/e(Er / EL) where e(Er /Ep) denotes the ramification
index of the “local” extension of discretely-valued fields E;, / E; (which we have not yet
shown to be a finite separable extension).

Our interest in the (imperfect) norm fields Ej, for finite extensions M/K,, is because
we will eventually prove that the correspondence M — E,; sets up a fully faithful bijection
between the finite extensions of K inside of K and the finite separable extensions of Ex_ =
Ex inside of the algebraically closed field Frac(R). In particular, the Galois theory of K,
will coincide with that of the discretely-valued complete equicharacteristic field Ex_ . To get
a handle on the relations among these fields, it will be useful to relate them to the perfect
norm fields. More precisely, we wish to see how the fraction field E); of Ej}, is related to the
perfect fraction field Frac(Rys) of Ryy.

Choose L finite over Fy = W(k)[1/p| inside of M so that M = L. We have a local
inclusion Ef, := Ef — Ry (in particular, Ry really is not a field!), and so by perfectness
we see that Ry, contains the ring ¢ =>°(Ej,) of p-power roots of elements of E}, (and likewise
at the level of fraction fields). We shall prove that ¢=>(E},) is dense in Ry for the vg-adic
topology (and so likewise at the level of fraction fields). To do this, we need some more



CMI SUMMER SCHOOL NOTES ON p-ADIC HODGE THEORY (PRELIMINARY VERSION) 215

precise control on how “big” Ry, is inside of R = R(0%/(p)) = R(O%/ar,0%). This rests on
a study of the following map: for n > 0, define

by the formula (2,,)m>0 — 2,. The restriction p,|g,, has image contained in Oy /a;0),
and we now describe the kernel and image of p,|g,, more precisely:

Corollary 13.3.10. Let M/Ky be a finite extension inside of K, and choose L/ F, finite
inside of K such that M = L,. The map p, induces a surjection Ry — Oy/ap Oy whose

n

kernel is T ““" Ry, where ¢, > 1 is an integer depending only on L and ay. Ifn > ny
then this map carries EY, := Ef onto Oy, /a0, .

Proof. Via the isomorphism 6 of Proposition 13.3.8, if n > ny then the restriction of p, to
E; is identified with the k;_-algebra map map kr_[X] — 01, /a0, sending X to 7,
for all n > 0. This is visibly surjective, and (with ¢, := v(a.) and e, := ey, ) its kernel is
generated by X%en = XP" "L wwhere ¢f, = e,, 07, so the second statement is proved.

For arbitrary n > 0 we have p,.1 0 o = p, on Ry, where ¢ is the p-power map, so by
invertibility of ¢ on the perfect Ry, we see that all p,(Rys)’s are the same. If we fix n and
choose m > max(n,ny) then

O1,/000r, = pn(EL) C pm(Bar) = pu(Bur).

Letting m grow, this proves that p,|g,, has full image in Oy/a, 0.
It remains to determine the kernel of p, on Ry, We have vg(7r) = p™o(ry, ) = p"/en,
where e,,, is the absolute ramification index of L,,, . Hence, for x = (x(m))m>0 € Rj; we have

that p,(z) = 0 if and only if 2 € a0y, and since vgr(z) = v(@®) = pro(z™) we see
that it is equivalent to have vg(x) > p™dr = p" "LcLvr(Tr). In other words, ker(p,|r,,) =
7 "HL Ry, as desired. [ ]

As an application of this corollary, we can establish the link between imperfect and perfect
norm fields:

Proposition 13.3.11. Let M/K,, be a finite extension inside of K, and L/Fy finite with
Lo = M. The subring o=>°(E};) in Ry is dense for the vg-adic (equivalently, 71 -adic)
topology.

Proof. Pick an arbitrary element x € Rj;, so x is identified with a p-power compatible
sequence (T, )mso0 in Onr/apOy. To approximate z by an element of ¢~>°(E};) we see to
build some p-power compatible sequences (y,) of elements vy, € Oy, /a,Op, for n > np.
To this end, fix n > ny and consider z,, € Oy /a,0). Since Oy is the rising union of
the valuation rings &p  for m > 0, we can pick n’ > n such that z,, lies in the subring
ﬁLn, /ar ﬁLn/ .

By Corollary 13.3.10, there exists y = (ym)mso € E}; := EJ such that y,, = x,. Hence,
pn(@) = pr(y) = pul@" " (y)), s0

T — Son—n’ (y) € ker pn|RM = ﬁIanLCLRM

(once again using Corollary 13.3.10). By taking n large, we get elements of ¢=>°(E},)
arbitrarily close to x.
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The loose end from the theory of perfect norm fields (at the end of the proof of Proposition
13.2.6) can now be filled in:

Corollary 13.3.12. Let M'/M be a finite Galois extension of finite extensions of Ku. If
g € Gal(M'/M) acts trivially on Ry then g = 1.

Proof. Let L/K be a finite extension such that L., = M and L = L,,,. Every element of Ry

is represented by a unique p-power compatible sequence in 0 M7, SO g acts trivially on all such
sequences. The surjectivity in Corollary 13.3.10 gives that every element of &y /a0y is

the reduction of the initial term of an element of R,;. In particular, the g-fixed part of &)
maps surjectively to Oyp/apOyp. But since L = L, , we have that ay is a proper ideal in
O, (on which g acts trivially). Thus, by successive approximation we conclude that g acts
trivially on 0 v, 80 g = 1 as desired. |

13.4. Imperfect norm fields: Galois equivalence. We can now finally study how the
norm field Ej; varies with M. By construction, if M’/M/K, is a finite tower inside of K
then Ej; is contained in Ejy inside of Frac(R) since we can write M’ = L and M = Ly
with L'/L finite over W(k)[1/p] inside of K. We eventually wish to show that all finite
separable extensions of the norm field Ex_ have the form E,;, and use this to identify the
Galois theory of K, and Eg_. It is not yet clear if such extensions of (imperfect) norm
fields are separable, but let us first show that the degree is as desired:

Proposition 13.4.1. For M'/M/K, finite inside of K, the extension By / By has finite
degree equal to [M' : M].

Proof. By choosing a finite Galois extension of M inside of K that contains M’, we may use
transitivity of field degree to reduce to the case when M’/L is Galois. Thus, we can choose
a finite extension L'/L over W (k)[1/p] such that L'/L is Galois, M' = L., M = L, and L’
is linearly disjoint from L, over L, so for L, = LK, and L, = L'K,, we have the equality
of Galois groups
Gal(L'/L) = Gal(L,,/L,) = Gal(M' /M)

for all n. We can also arrange that L has the same residue field as Lo, = M (i.e., all L,,/L
are totally ramified). Since L'/L and M'/M have canonically identified Galois groups, there
is a canonical bijection between their lattices of intermediate fields. In particular, by using
transitivity of field degree, it suffices to separately treat the cases when L'/L is unramified
or totally ramified. Moreover, in the totally ramified case we may assume that M’ and M
have the same residue field (as otherwise some L/ /L, has a nontrivial residue field degree,
so by replacing L'/ L with such an L/, /L,, we could use another application of the unramified
case and drop the degree of [M’ : M|, and proceed by induction on this dgeree). Keep in
mind that EM = EL and EM/ = ELI.

First assume that L’/L is unramified, so since L., /L is totally ramified it follows that
L! /L, is unramified for all n, so uniformizers of L, are uniformizers of L/ for all n. Hence,
we can use 7y as Ty, so the extension Ep /Ep of completely discretely-valued fields has
ramification index 1. Its residue field extension is kz,_/kr., so [Ep : Er] = [kr @ k]
Likewise, since L'/L is unramified, we have [L' : L] = [k : kz]. It has been arranged that
kr. = kp, and since L/, = L' ®;, L,, with L, /L totally ramified and L'/L unramified we see
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that bz, = kg, for all n > 0. Passing to the limit, k7, = k;/, so the desired equality of field
degrees is proved in the unramified case.

Now we can assume L'/ L is totally ramified with all ! | L,,, L. = M', and L., = M having
a common residue field &’. Thus, each L/, /L, is totally ramified with degree e := [L/_ : L],
so for any choice of uniformizers 7y, or L, and 7, of LI, we have 0y, = Oy, [rr,] and
Tr, = Tf Un for some u,, € O LX%. Choose the uniformizers so that for n > max(np,np/) we
have

p =
7TL,L+1 =7, mod ClLﬁL

p —
) 7TL;1+1 =TL, mod aLﬁL;H'

Then vy, = u, mod 7, ar0p, , provided that n is big enough so v(rf, ) < v(ar) (and we
can find such n since L/ /L] is a totally ramified Z,-extension for large enough m).

This compatibility property for the elements u, € & LX;L for large n defines an element
u € (E},)* such that 7, = 7%,u. Since Ep, = /(7)) and E, = k'(71)), we conclude that
the local extension of complete discrete valuation rings Ef — E}, induces the extension
k' — E'[t]/(t°) modulo ;. Successive approximation therefore implies that it is a module-

finite extension, necessarily then finite flat with degree e. Hence, E;, / Ep is a finite extension
of fields with degree e = [L]_ : Lo]. |

Recall from field theory that if F’/F is a finite extension of fields, then # Aut(F’/F) <
[F': F] with equality if and only if F'/F' is Galois. We use this to prove:

Proposition 13.4.2. For every tower M'/M /K, of finite extensions, the extension of norm
fields Epp [ Epr is finite separable with degree [M' : M|, and if M'/M is Galois then so is
Eyy /Epy, and there is a natural isomorphism Gal(M' /M) ~ Gal(Eyy / Epy).

It will be proved shortly that there is a converse: if Ey; / Ej; is Galois then so is M'/M,
and in general Homg (M, M) = Homg,_ (Eas, Eag,) for all finite extensions M, My of

K, inside of K.

Proof. By transitivity of separability and field degree via a finite extension of M’ that is
Galois over M, it suffices to treat the case when M’'/M is Galois. Proposition 13.4.1
shows that [Eyy : Ey] = [M' : M], so we just have to construct a natural isomorphism

We may and do find finite extensions L'/L/K such that M = L', M = L., and L'/L is
Galois with L' = L' ®, L. In particular, [M": M] = [L': L] and Gal(M'/M) is naturally
identified with Gal(L’/L), with this group identification compatible with any further increase
in L (and corresponding increase in L'). We also increase L so that we can take L,, = L,
so ay, is an ideal in &, (proper and containing p). There is a natural map of groups

Gal(L’/L) — Aut(EL/ /EL) = Aut(EM/ /EM)

(the latter equality by definition of E,; and E,;), and it suffices to show that this is an
isomorphism. The target has size [Epp : Ey] = [M' : M| and the source has size [L': L] =
[M’ : M|, so it suffices to prove injectivity.

Consider g € Gal(L'/L) that acts trivially on Ey,, so its isometric action on Ry, = Ry
is trivial on the subring ¢ ~>°(E},) of p-powers of elements of Ef, = E},. By Proposition
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13.3.11 this subring is dense, so g acts trivially on Ry;. Hence, the element g € Gal(L'/L) =
Gal(M'/M) acts trivially on Ry, so by Corollary 13.3.12 we get g = 1 as desired. [

Theorem 13.4.3. The functor
{ﬁm’te extensions of Ky in F} — {ﬁmte separable extensions of Ex_ in Frac(R)}
M ~~ EM

1s an equivalence of Galois-categories.

There are two things to be proved: the bijectivity on Hom-sets, and the essential surjec-
tivity of the functor. First we consider bijectivity of the map

I‘IOIIlKoo (M,, M) — HOHIEKOO (EM/, EM)

Let M" /K be a finite Galois extension containing M and M’. Then Homg_ (M’, M) is the
set of Gal(M"/M)-invariant elements in Hompg_ (M’, M"), and similarly on the norm-field
side, so by applying Proposition 13.4.2 to M” /M and using functoriality we may replace M
with M"” to reduce to the case when M /K, is a Galois extension containing M’ (inside of
K). In this case Homg_ (M, M) is naturally identified with Gal(M/K.,)/ Gal(M/M'), and
similarly on the norm-field side, so by functoriality we are done.

It remains to prove the essential surjectivity:

Proposition 13.4.4. Let M/K,, be a finite extension inside of K and E a finite separable
subextension of Frac(R)/ Ey. There exists a finite extension M'/M inside of K such that
E = E,y inside of Frac(R).

Proof. Since E is finite over E,;, its ring of integers is a complete discrete valuation ring
which is finite over that of Ej;. In particular, the extension of perfect residue fields kg /ky; is
finite separable, so there is a unique finite extension M;/M inside of K for which ky;, = kg
and [M; : M| = kg : kyl. (To make My, first choose a finite extension F' of W(k)[1/p]
inside of K such that M = Fiingty- Then pick n large enough so that I is a totally ramified
Z,-extension of F,. Let M; be the linearly disjoint compositum of M over F, with the
unramified extension of F,, inducing the residue field kg.) We have Ey; := Er = kp_(Tr)).
The proof of Proposition 13.4.1 then gives that Ey; = ky, [Tr], so by replacing M with M,
we may and do arrange that kg = k.

Having arranged that kg = kjs, now choose a finite extension L of W(k)[1/p] inside of
K such that M = L.. By Proposition 13.3.8, we have Ey; := E; = k;_((71)). Since E
is finite over Ep, we have E' = kg((x)) with  the root of a separable Eisenstein polynomial
P € kg[m.][X] [44, Ch. II, Thm. 2]. The meaning of the Eisenstein property is that

P=X4+a; X'+ +a,

with a1,...a. € T, E} and a. € 7, - (Ej{)X To find the required L'/L we will make an
Eisenstein polynomial over some &, that “approximates” P and has a root in K generating
an extension of L., = M whose associated (imperfect) norm field in Frac(R) will be E over
E;.

To carry out the approximation, we need to use approximations slightly better than modulo
az, so instead of using the p,’s as defined in (13.3.2) we use the variant p), with a% replacing
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ar; this is permissible since R = R(0%/a0%) for any open proper ideal a whose powers cut
out the p-adic topology (e.g., we may use a% 0%) and Corollary 13.3.10 remains valid for a2
as well upon increasing some constants such as ny. For each n > n define

Ty = p;L(SL’) € ﬁLn/aLﬁLn, p;(P) = X¢ +pn<a1)X6_1 + - —i—pn(ae) c (ﬁLn/aLﬁLn)[X]

Let P, = X4 a1, X '+ -+ae, € Or,[X] be any lift of pr, ,(P). We have ay p, ..., Qe p €
T, 0L, and ., € 71, O LXn (because this holds modulo ay; we can increase ny, if necessary
so that v(wp,) <wv(ap) for all n > ny). Thus P, is an Eisenstein polynomial over L,.

Let y be a root of P in R and define y,, = p,(y) € Ox/a% 0. We have p,(P(y)) = 0, so
P.(y,) = 0 in O/a%0%. By separability of P over Frac(R), P'(y) # 0 in R. Hence, taking
n sufficiently large (depending on y), we can arrange that P! (y,) = pn(P'(y)) is “almost a
unit” in O/a% 0. More specifically, we can ensure that P! (y,) #Z 0 mod a;0%. (Here we
are using that if r = (r(™),,59 € R is nonzero then p™vg(r™) = vg(r®) is fixed and finite,
so vr(r™) — 0 as m — o0.)

There exists a finite subextension L, of K/L, such that y, € & Lwn /0201, . Observe
that 07, , is a p-adic discrete valuation ring over which P, is a monic polynomial with
nonzero discriminant (which is generally not a unit in &y, , ). We wish to prove (at least for
big enough n) that there exists a g, € €y, , that is a root of P, and reduces to y, modulo
a0y, . - Note that in this lifting step the initial congruence modulo a2 has been weakened
to one modulo a;, (which is why we had to impose the stronger congruence condition at the
outset). To carry this out, the usual form of Hensel’s Lemma is of no use since P/(y,) is
generally not a unit. But we will show that it is “almost” a unit for sufficiently large n, so we
will be able to succeed by using Lang’s generalization [33, II, §2, Prop. 2] of Hensel’s Lemma
(incorporating a uniqueness aspect which is not stated by Lang and will not be helpful or
relevant in what follows):

Lemma 13.4.5 (Lang). Let F' be a field complete for a nontrivial R-valued non-archimedean
valuation v, let A be its valuation ring, and let f € A[X] be a monic polynomial. Suppose
there exists ag € A for which v(f(ag)) > 2v(f'(ao)). (In particular, f'(ag) # 0.) There is a
root a of f in A satisfying v(a — ag) = v(f(ag)) — 2v(f'(ag)). It also satisfies v(a — ag) =
v(f'(ap)) and is unique as such.

To apply this lemma, let d; = v(az). Consider any z € &y, reducing to y, modulo
a3 0., , 50 v(P,(z)) > 26 since P,(z) reduces to P,(y,) = 0 modulo a7, . For
sufficiently large n we will use Lang’s criterion to find such a z for which v(P/(z)) < 0./2,
so 20(P)(2)) < v(Py(2)) — 01 < v(Pu(2)). There will then exist a root ¥, of P, in &y,
such that

'U(@\n — Z) 2 ’U(Pn(Z)) - QU(P;L(Z)) 2 25L — 51, = 5L,
S0 Y, = zmod a5 0, and hence ¥, = y, mod a0y, . That is, we will have found the
desired .

Since P!(yn) = pu(P'(y)), we have P.(y,)* = pn(P'(y)*). But P'(y) # 0 in the domain
R (as y is a root of the polynomial P € R;[X] with nonzero discriminant), so P'(y)* #
0, and hence we just need to check that for any nonzero r = (r™), o € R, p,(r) =
7™ mod a;0c, is nonzero for m large enough. Since p"vg(r™) = vg(r®) is fixed and
finite (as 7?) # 0), so vg(r™) — 0 as m — oo, for big enough m we have vz(r™) < v(ay)
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(as v(ag) > 0, due to a, cutting out the p-adic topology). This completes the construction
of the desired root ¥, € 0y, of P, lifting y,,, with 7, unique as such even in O%.

The polynomial P is separable over E; and monic over E}, so it has e distinct roots in
R: for n big enough, say n > ng, we have vg(y —3') < p" "tcpvr(Tr) for any distinct roots
root y, 1y’ of P, where ¢y, is as in Corollary 13.3.10. The description of the kernel in that
corollary therefore gives that y,, # v/, in O/a, 0% for such n, so v(y, —y.,) < dp, == v(ar)
where ¥, and ¥, are the respective roots of P, in 0% found above that lift y, and y/,. In
particular, as we vary y through the e roots of P in Frac(R), we get e pairwise distinct roots
y of P, in 0%, so these must be all of the roots of P, in 0.

On the other hand, since 2? | = x,,, we have 2! | —z,, = 0in O /a 0%, sov(Zh  , —T,) >
6. Thus, v(zh_ —Z,) > v(Yn — T») for all roots y of P distinct from our initial root z that
we had at the start (the uniformizer of E). By Krasner’s lemma [33, Ch. II, Prop. 3], this
implies T, € Ly, (2% ).

The fields L/, := L,(z,) for n > ng will solve our problem as follows. Each L/ is a
totally ramified extension of L,, of degree e (as it is generated by the root of an Eisenstein
polynomial P, of degree e over L,), so the residue field of each L/, is kr_ and its valuation
ring Oy, has the form &y, [#,] where Z, is a root of P,. Moreover, L/, C L/ ,,, so we have
the following situation:

e L/n—l—l

Ln—l—l

p L/

L=
This implies that [L],,, : L] = p and L., = L,41L},. In particular, L), = LK, for all
n > ng, where L' = L/, . By construction, the element z = (x,) € R lies in Ej,, so
E=ky () CEp. But [Ep :Ef] =[L, : Ly =e=[E:EL],so £ =Ep and we are
done. -

To summarize, we have proved that for each finite extension M /K, inside of K there is a
well-defined subfield E;; := E, inside of Frac(R) for any finite L/ K (inside of M) satisfying
LK., = M, and that the subfield

E= |J Eu

KoCMCK
M/K finite

is the separable closure of Ex_ := Ef in Frac(R). Moreover, we have naturally
Gal(K/K,)~Gal(E/Eg.)

carrying Gal(K /M) to Gal(E / E,;) for all finite subextensions M of K/K.,. (Equivalently,
Gal(K/Ly) ~ Gal(E / Ep) for all finite subextensions L of K /K.)

By Lemma 13.1.10 we know that if L'/L are finite over K inside of K then the numbers
p"v(®rs /1) are uniformly bounded for all n > 0. In fact, something much stronger is true:
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this sequence eventually becomes constant, and the terminal value encodes ramification
information for the corresponding extension E;,_/E;_ of (imperfect) norm fields:

Proposition 13.4.6. Let M'/M be finite over Ko, inside of K, and let L'/L be finite
over K inside of K such that L', = M’ and Ly, = M. The extension Eyp / Eyr of com-
plete discretely-valued fields is unramified if and only if M' /M is unramified, and in general
’UE(QEM,/EM) = an(@Lgl/Ln) fO’F all n 2 nrr.

Proof. Since [Epp : Ep] = [M' 2 M) and Ejps (resp. Ejp) has the same residue field as M
(resp. M’) inside of k, the equivalence for unramifiedness is clear.

To relation the ramification information in characteristic 0 and in characteristic p, by
transitivity of the different we can reduce to the case when M'/M is Galois (by comparing
with a finite extension of M’ that is Galois over M). We can also reduce to the case when
the Galois extension M'/M is totally ramified (and hence E,p / Ejy is totally ramified). By
replacing L and L' with L,, and L, for sufficiently large n, we can also arrange that the
residue fields of L’ and L coincide (so all intermediate fields have the same residue field
too), and we can arrange that L’ is linearly disjoint from L, over L and L’/ L is Galois. Thus,
L! /L, are Galois with the same Galois group as L'/L. Let G = Gal(L'/L) = Gal(M'/M) =

Let P (resp. P,) be the minimal polynomial of 77, over E;, (resp. of 7, over L), so

vr(®E,, /B;) = vr(P(Tr)) = lim p"o(P(my,)) = lim p"v(Dpyi,)-
On the other hand, we have arranged that Gal(L],_,/L,11) ~ Gal(L,/L,) = G. In particu-

lar, we have
(QL/ +1/Ln+1> = Z /U(g(ﬂ-L,ln+ ) - 7TL;,L+1>
geG
since L] /Ly is totally ramified with Galois group G. Since 7r§;L+1 =np, modap O

and v(mp, ) <wv(ay) for n > ny, we have v(g(mry ) — 71 ) = v(g(w’]i;lH) — W’L’;H), SO

@L' /Ln ZPU 7TL' - 7TL’,L+1) =D ,U(DL,,L+1/L7L+1)'
geG

13.5. Some rings in characteristic zero. In the period ring constructions of p-adic Hodge
theory, the ring W(R) played a prominent role. Now that we see R is but a special case
of the theory of norm fields, it is natural to look into Witt rings of valuation rings of other
kinds of norm fields. Witt rings of imperfect rings are quite awful, so we restrict attention
to perfect norm fields and their valuation rings.

Definition 13.5.1. Let L be a subextension of K /Fy (possibly of infinite degree over Fy).
Define A} = W(Ry) and A, = W(Frac(Ry)). In the special case L = K denote these as
AT =W(R) and A = W(Frac(R)). Endow these rings with the Witt vector Frobenius ¢.

We made extensive use of the ring AT = W(R) when constructing period rings, and used
crucially that its natural action by G, = Gal(K/Fjy) commutes with the action by . The
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ring A = W(Frac(R)) was useful in our initial development of the theory of G-modules in
integral p-adic Hodge theory.

Remark 13.5.2. Tt can be quite difficult to remember all of the notation. Here are some rules
to remember the above notation. Ring denoted “A” are always Z,-flat, and p is not a unit
in them. Roughly speaking, rings with a “+” are “more integral” than the ones without.
We view A" := W(R) are “more integral” than A := W (Frac(R)), for example.

Proposition 13.5.3. If H is a closed subgroup of G, and L = K" then
(AN = A AT = A,
In other words, W(R)® = W(Ry) and W(Frac(R))¥ = W(Frac(Ry)).
Proof. Apply Proposition 13.2.4 to Witt coordinates. |

Since R and its fraction field Frac(R) admit vg-isometric actions by G, their Witt rings
admit natural product topologies. In the case of W(R) this was rather crucial in defining
the interesting topology on Bj, in Exercise 4.5.3 which went beyond its discrete-valuation
topology (and was necessary for B, to “know” the valuation topology on its residue field
Ck, the topology one must use when applying the Tate-Sen theorems on H'). We now give
this topology a name:

Definition 13.5.4. The weak topology on A = W (Frac(R)) is defined as the product topol-
ogy of the vg-adic topology under the identification of sets W(Frac(R)) = [], 5, Frac(R).
Equivalently, it is the inverse limit of the product topologies on each W, (Frac(R)) =
Frac(R)".

We define the weak topology on A+ = W(R) similarly. (This is the subspace topology

from the weak topology on A.) We make similar definitions for Aj{ = W(Ry) and A =
W(Frac(Rp)).

The importance of the topology on Bj; from Exercise 4.5.3 makes it clear that the weak
topology on W(Frac(R)) is a good thing to work with. It is has many more open sets than
the p-adic topology (which corresponds to making Frac(R) discrete).

An important application of the rings R and Frac(R) in p-adic Hodge theory is to provide
explicit Cohen rings for fields like k((u)), or more intrinsically (as we can now see) Cohen rings
for imperfect norm fields. In Example 3.2.1 and the subsequent considerations in §3, as well
as in Remark 10.4.6 and the subsequent consideration in §10.4, we saw how such Cohen rings
are found inside of W(Frac(R)) and are related to the theory of étale p-modules. (Strictly
speaking, those earlier situations used non-Galois extensions K.,/K and so require a more
general theory of norm fields, as in [51].) Since we now better understand (via imperfect norm
fields and Theorem 13.4.3) how étale p-modules provide a semilinear algebra classification for
p-adic representations of Gi__, before we move on to explain how to improve this to classify
representations of G it is instructive to revisit the earlier constructions from Example 3.2.1
and Remark 10.4.6. to concretely construct (and then use!) Cohen rings for any imperfect
norm field (in the setting considered above: K. /K essentially an infinitely ramified Z,-
extension).
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To make a concrete Cohen ring for the imperfect norm field Ex_ := Eg, we first give
a concrete description of this field: by Proposition 13.3.8 there is a isomorphism of kx_ -
algebras

HKoo . ]{ZKOO[[X]] — E}

defined by X — T where Tx can built from a system of norm-compatible uniformizers in
the K,,’s for large n. (For K = W(k)[1/p] we identified one explicit choice of Tk in Example
13.3.7: € — 1.) The uniformizers of Ef; are elements with a certain explicit vg-valuation
(given in the discussion preceding Example 13.3.7), but it is hard to make Ty very explicit.
Let us assume such a choice has been made and do everything else concretely based on this
choice. ~

Pick a lift 7x € W(Frac(Rgk. )) = Ak, of Tk, such as the Teichmiiller lift [Tx], so Ok,
lifts to an injective homomorphism of W (kg__)-algebras:

Or.. : W(kr)[X] — Ax.,

XH/ﬂ\'K

The element T is a unit in ;‘;Koo because its image in the residue field Frac(Rg_ ) is the
nonzero element 7. Thus, the lifted map Ok _ uniquely extends to an injective homomor-
phism of W(kg_ )-algebras

W(kg )[X][ X — Ak = W(Frac(Rg.)).

The target is a p-adic discrete valuation ring and the source is a Dedekind domain in which
(p) is prime (the quotient by (p) being the field kx__ ((X))). Hence, there is an induced local
injection W (kx ) [X][X ) — W(Frac(Rk.)), so it extends uniquely to a local injective
on the p-adic completion of the source ring:

it Wk V[XI{X '} — W(Frac(Ry.)) = Ax.,

where W (kg )[X]{X '} is the ring of integral formal Laurent series whose negative-degree
coefficients tend p-adically to 0. This is analogous to the construction &(,, — W(Frac(R))
that was used in integral p-adic Hodge theory.

Definition 13.5.5. Define Ax C A = W(Frac(Rx..)) to be the image of jk. . This is a
Cohen ring for the imperfect norm field E[1/7x]| = Ex.

Remark 13.5.6. Beware that the subring A g just defined inside of ;&Koo depends on the

choice of . Indeed, we can change Tx by adding to it pw for an arbitrary w € A x..! We
will regard this choice as fixed for all time.

For any finite extension L/K, we can make an analogous construction which avoids needing
to make yet another non-canonical choice of a 7. First, since E, is a finite separable exten-
sion of the residue field Ex of Ak, by Hensel’s Lemma there is up to unique isomorphism
a finite unramified extension A /A inducing the extension Ej / Ex on residue fields. In
particular, A is a Cohen ring for the norm field E;. Moreover, since A = W(Frac(Ry_))
is a p-adic discrete valuation ring containing Ak, and its residue field Frac(R_ ) contains
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the finite separable extension Ej, of the norm field Ex, by Hensel’s Lemma there is a unique
local A g-algebra map

Ap— A =W(Frac(Ry_))
lifting the inclusion E; < Frac(Ry_ ) on residue fields.

Consider the directed system of Cohen rings {A [} inside of W(Frac(R)) as L runs through
the finite extensions of K inside of K. (It would be more elegant to index these subrings
by the finite extensions M/K...) The directed union of these rings is a discrete valuation
ring with uniformizer p inside of W(Frac(R)) having residue field that is the union E of the
E;’s (so E is the separable closure of Ej inside of Frac(R), by Theorem 13.4.3). Hence, the
completion A of UA [ is a Cohen ring for E = (Eg)s, so it is also the p-adic completion of
the valuation ring of the maximal unramified extension of A x[1/p] = Frac(Ag).

The theory of (¢,I')-modules involves how the Gk-action on W(Frac(R)) interacts with
the subrings A . This rests on:

Lemma 13.5.7. For each finite extension L/K inside of K, the G__-action on W (Frac(R))
is trivial on Ap and AL~ = A;.

Proof. We first focus on the basic case L = K, and then build up everything from that. Since
G, acting on R has trivial action on Rp_, and hence on Ef, it follows that the G-
action on W(Frac(R)) is trivial on W(Frac(Rg_)). But Ak lies inside of W(Frac(Rg_,))
by construction, so it has a trivial action under Gg_. In view of the uniqueness of the
A k-algebra embeddings A — W(Frac(R)) lifting the canonical inclusions E; < Frac(R)
on residue fields, it follows that the Gx_-action shuffles the A’s (with their embeddings) as
it does the E’s inside of Frac(R) via the canonical isomorphism Gk, ~ Gal(E /Eg) from
Theorem 13.4.3. Thus, the G_ -action must preserve the maximal unramified extension of
A k[1/p] and hence its p-adic completion A[1/p], and at the residue field level this induces
the isomorphism of G onto Gal(E/Eg). By the completed unramified descent from
Lemma 3.2.6 (applied to the discrete valuation ring Ag), we conclude that A%k~ = Aj.
This settles the case L = K.

In general, G inside of Gk, is identified with Gal(E /Ey) inside of Gal(E /Eg) via
the norm field equivalence of Galois theories. Thus, the same argument via tracking residue
field maps shows that G must act trivially on A, and since A is likewise identified with
the completion of the maximal unramified extension of A; we may again use completed
unramified descent (now applied to Ay) to see that A%t = A;. [ |

13.6. (¢,I')-modules. We can now use Theorem 13.4.3 and §3 to obtain the classification
of G_ -representations via étale ¢p-modules, as follows. Assume 7 has been chosen so that
Ak is stable under the y-action; this holds if we choose the Teichmiiller lifting 7y := [Tx],
for example. It is automatic that this ¢ on Ak lifts the Frobenius on the residue field Eg
(as may be checked more generally for the ¢-action on W(Frac(R))), and by functoriality
the completed maximal unramified extension A is also @-stable. Together with the -
equivariant Gg_-action on A that is trivial on Ax (Lemma 13.5.7), we are in ezactly the
setup axiomatized in §3 to classify p-adic representations of Gx_ ~ Gal(E /Eg) via étale
p-modules over Ak (with Ak here playing the role of O¢ in §3, and likewise Ex playing the
role of E there). In other words, we have just proved:
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Theorem 13.6.1. Assume T is chosen so that Ak is p-stable. There is an equivalence
between Repg, (Grk,,) and the category of étale p-modules over Ay via

T ~ (A ®gz, T)%=, D~ (A ®a, D)*¥%P.

There is an analogous equivalence between Repq (Gk..) and the category of étale p-modules
over the fraction field B = Ag[1/p].

We want to extend this to a classification of Repz (Gx) and Repq, (Gk) in terms of
semilinear algebra data. This requires one further hypothesis on Ag: it is stable under
the action of the full group Gx on W(Frac(R)). Assuming this, by tracking unramified
extensions via residue fields we see as in the preceding arguments that A would then also be
G g-stable. Unfortunately, the subring A i in W(Frac(Rk,__)) rested on a choice of 7y about
which we know very little, so it is hopeless in general how to find Tk so that G preserves
A k. A case which might be tractable is to use the Teichmiiller lifting 7y = [Tx| (for which
at least p-stability of Ak is automatic) and to hope that the Gx-action on Frac(R) has a
very simple description on 7g. There is a fundamental example in which a slight variant on
this works:

Ezxample 13.6.2. Consider the cyclotomic case Fo = Fo(ppe) with Fop = W(k)[1/p]. In this
case, let F,, = Fy((pn — 1) with {(,»} a compatible system of primitive p"th roots of unity.
By Example 13.3.7, we may take Tp, = ¢ — 1 € R, so we can take 7, := [¢] — 1 as Tp,. (This
is not [¢ — 1], on which the G g,-action is a mess.) We can see the G- and p-stability of the
Cohen ring Ap, thanks to the formulas

or) =[P —1=Q+7m)P 1, g(n.) =[]*9 —1=(1+m)X9 —1.

In general, for any K we can apply the above procedure to the maximal unramified subfield
Foy = W(k)[1/p] in K and then take Ak to be the unique unramified extension of A, inside
of W(Frac(R)) corresponding to the finite separable residue field extension Ex_ /Ep,_. The
G p,-stability of Ap, then implies the G-stability of Ay, and likewise for the p-stability.
(We could then a-posteriori pick an element 7Tx € A lifting T in the residue field Ex
and thereby “reconstruct” Ay inside of W(Frac(R)) using this choice of 7x. However, such
reverse-engineering is not necessary, since Tx above was solely an intermediate device in the
attempt to find a ¢-stable and G g-stable Cohen ring of E inside of W(Frac(R)).)

Now we assume we are in a case for which Ak is stable under G and ¢ (as can always be
arranged by taking K, = K (pup~)), Necessarily A is stable under both of these as well, as is
A for L/K finite Galois (and Ay is G-stable for every finite extension L/K inside of K,
as may be checked using residue field considerations). Keep in mind that the G g-action on
A commutes with the g-action on A, as these action both arise from W(Frac(R)) on which
the two visibly commute. We identify G with Gal(E /Ek).

Recall that I' = Gal(K./K) (containing Z, as an open subgroup). Since G preserves
Ak by hypothesis and G__ acts trivially on Ax (Lemma 13.5.7), we get a natural action of
I' on Ag. Since étale p-modules over A are finitely generated A g-modules, we are going
to want to consider situations in which such modules have a ['-action compatible with the
I'-action on A . Here is the basic construction:
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Ezample 13.6.3. For T' € Repy (Gk), consider the associated étale p-module
D(T) = (A ®Zp T)GK‘X’

over Ak, endowed with its p-action, and the induced action of I' = Gal(K /K ) = Gk /Gk.. .
which commutes with ¢ (as the g-action comes entirely from A, on which it commutes with
the Gk-action).

Going in the reverse direction, consider an étale ¢-module (D, ¢p) over A, and assume it
is endowed with an action by I' that commutes with the ¢-action and is compatible with the
I'-action on A k. We then form the A-module A ®4, D as usual, endowed with the diagonal
action of Gk (using I' on D!) which commutes with the diagonal Frobenius operator ¢ ® ¢p.
Hence, the associated finitely generated Z,-module T(D) = (A®a, D)?®#? is endowed with
an action of G.

To make effective use of I'-action on finitely generated modules over A or its fraction
field Bx = Ak[1/p], it is crucial to also impose a continuity condition relative to a natural
topology on this rings. (For example, this will be needed to ensure that any G g-modules we
construct actually have continuous G g-action.) We do not use the p-adic topology of Ay,
since the action of I' is not continuous relative to this (and likewise for the Gk-action on
A). Indeed, using the p-adic topology would be tantamount to viewing the residue field Ex
discretely, and it is not true in interesting cases that the ['-action on Ex (arising from the
aziom that G preserves Ak inside of W(Frac(R))) is continuous for the discrete topology.
For example, in the cyclotomic case in Example 13.6.2 the action of Gal(K (j,~)/K) on
Ex = k(X)) goes via y(X) = (14+ X)X —1, so y(X) # X whenever vy # 1. Exercise 13.7.9
takes care of the important topological aspects of A, A, and their fraction fields which are
needed to make later proofs work (so that exercise should be looked at).

By keeping track of the I'-action that remains when a Gi_-action is eliminated, we arrive
at:

Definition 13.6.4. Assume A is Gg-stable inside of W(Frac(R)). A (¢, I')-module over
A is a finitely generated A g-module D equipped with (i) a Frobenius operator ¢p that is
semilinear over the ¢ on Ak (i.e., (D, ¢p) is a p-module over Ag) and (ii) a ¢ p-equivariant
action of I' that is semilinear over the I'-action on Ag and is continuous for the natural
topology of finitely generated A g-modules (as in Exercise 13.7.9).

Such a (¢,I')-module is étale if the underlying p-module over Ay is étale (i.e., the lin-
earization of ¢p is an isomorphism). We denote by ModiK(go,F) the category of étale
(¢, I')-modules over Af.

The analogous definitions over A go the same way.

By Example 13.6.3, Exercise 13.7.9, and the equivalences of Fontaine in Theorem 3.2.5,
we immediately obtain:

Theorem 13.6.5. Assume Ay is Gg-stable and p-stable in W (Frac(R)). Then the functor
D: Repy, (Gx) — Mody, (¢,T)
T ~ (A ®g, T) %

is an exact equivalence of categories, with quasi-inverse (D, pp) — (A @A D)W&DD:M.
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In particular, the category Repy (Gk) is equivalent to the category of étale (¢,1")-modules
over the impefect norm field Ak /(p) = Ex ~ K'(w)) (with k' the residue field of K ).

Example 13.6.6. Let’s work out D(T") for T' = Z,(r) with r € Z. From the definition we
compute D(T) = (A(r))%%=. But Gk acts trivially under x", so the Tate twist pops out
and we have D(T) = A%k~ (r) = Ag(r) as an Ag-module, and its I'-action is exactly the
Tate twist of the usual one. Its Frobenius structure is the usual one on Ag. In other words,
D(Z,(r)) has underlying ¢-module A, but the I-action is twist by x*.

We can adapt the Z,-theory to describe Repr(G k), out of analogy with Theorem 3.3.4, as
follows. Let B = A[p~!] and By = Ak[p~!'] be the fraction fields of the Cohen rings A and
A k. These are complete discretely-valued fields endowed with a Frobenius endomorphism
(lifting the Frobenius on their residue fields) and a compatible action of Gk.

The notion of a (¢, I')-module (without the étale condition) over By and B is defined
exactly as for Ag and A, including the continuity requirement on the I'-action. To make
sense of an analogue of Theorem 13.6.5 we first need to define the notion of an ’‘etale (¢, I')-
module over Bi. The definition goes exactly as in Definition 3.3.2; i.e., we have to assume
that there is an A g-lattice stable under ¢ and I" and on which the g-action is étale (i.e.,
linearizes to an isomorphism over Ag). Note that the I'-action on any I'-stable A k-lattice
is automatically continuous (Exercise 13.7.9).

Exactly as in Theorem 3.3.4, we deduce (from Theorem 13.6.5) that the functor

D: Repq (Gk) — Modg, (¢,T)
V-~ (B ®QPV)H

is an exact equivalence of categories, a quasi-inverse being (D, ¢p) — ( B®g KD)w®¢D:1d.

The importance of these equivalences is mainly theoretical (as it is quite difficult to do
explicit calculations with general étale p-modules over A or Bg): they can be used to
convert questions about G g-representations into questions in semilinear algebra. Whereas
semilinear algebra is not necessarily a simple thing, it at least opens the door to a large body
of techniques (such as variation of coefficients, integral structures, etc.) that are much harder
(or impossible) to work with in terms of the language of G k-representations. For example,
the concept of a (¢, I')-module makes sense without the étale condition, and it can be useful.
In fact, although only the étale ones correspond to actual G g-representations, it happens
in some interesting situations that an irreducible p-adic representation of Gk has associated
étale (p,I")-module over By = Ak[1/p] that becomes reducible as a (¢, I')-module over
certain extension rings of By (allowing non-étale subobjects!). This comes up in Colmez’
theory of trianguline representations, for example.

13.7. Exercises.

FEzercise 13.7.1. By [44, Ch. III, §7, Prop. 14|, if A — B is a finite extension of Dedekind
domains that is separable at the level of fraction fields, the finite B-module Q} /A has a
nonzero annihilator ideal equal to ® /4. Since A — B is étale precisely when it is unramified,
which is to say Dp/4 = B, we could view B as being “approximately étale” if the nonzero
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Dp/a is not “too divisible”. However, this is a silly concept for Dedekind domains since the
valuations involved are discrete.

Things become rather more interesting over valuation rings like 'k __, since my_ contains
elements with arbitrarily small valuation > 0. In particular, if M/K is a finite extension
then the non-discreteness of the valuation on &), makes it more interesting to ask how
“close” the ideal anng,, (2 /@{w) is to O). That is, what is the infimum of the valuations
of its elements?

(1) Pick a finite extension L/K inside of M such that M = L. Prove that the natural
map li_n)lQlﬁLn 16w, Q5. /oy 18 an isomorphism. (We do not claim that the tran-
sition maps in the direct limit are injective.) Deduce that if a € my; = Umy, then a
kills Qg /. provided that v(a) > v(Dy,/k,) for all large n.

(2) Using Lemma 13.1.10, prove that QlﬁM/ﬁKoo is annihilated by m,;. In other words,
for any € > 0 there exists a € ) with v(a) < € such that a kills Qém/ﬁxw’ so this
module is killed by elements that are “almost units”. So we are justified to say that
Ok.. — Oy is “almost étale”. Another way to think about it is that essentially all of
the ramification in the L,’s is eaten up by the K,’s, leaving very little for the relative
ramification in L, /K, as n — oc.

Exercise 13.7.2. In the study of finite extensions of the field K, that is rising unions of
finite extensions of K, we want to “approximate” such extensions of K, by finite extensions
of K, for large n. This descent to a K, should also be compatible with properties of field
extensions (such as being Galois), provided n is taken large enough. There are many ways
in which this idea is implemented, and this exercise works out some ubiquitous operations
along such lines.

The setup we consider at first is an abstract field K (of arbitrary characteristic), and
an infinite-degree algebraic extension K., /K that is a directed union of a specified (not
necessarily linearly ordered or even countable) collection of subfields { K;/ K} of finite degree
over K. All composite fields below are formed inside of a fixed algebraic closure K containing
K.

(1) Prove that every finite extension M /K, has the form M = LK, for a finite extension
L/K (so M satisfies the same axioms as K, /K, by using the fields L; = LK, in
place of the K;’s), and that by replacing L with LK for sufficiently large i it can be
arranged that L contains some K; with L ®y, Ko ~ M (i.e., L and K, are linearly
disjoint over K;). Hint: first treat the case when M /K, is primitive, and then use a
suitable degree-induction.

(2) Let L and L’ finite over some K, be linearly disjoint from K, over K;,, and define
Lo = LKy, L, = 'Ky, L; = LK;, and L, = L'K; (for i > ig). Prove that
Lo = L' inside of K if and only if L, = L; for all large i, and that L. /K is
separable (resp. primitive, resp. Galois) if and only if the same holds for L;/K; for
all large ¢. Taking such a large 7, in the Galois case use linear disjointness to show
that Gal(L;/K;) is naturally identified with Gal(Leo /K ).

(3) Now assume that K is a complete discretely-valued field, and endow all algebraic
extensions with the corresponding valuation. Fix a finite extension M /K, and choose
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a finite extension L/K;, approximating it in (1) (including the linear disjointness
condition). Prove that the residue field degree [kys : kk. ] is equal to [kg, : kg,] for
all large i, and that kj;/kk. is separable if and only if k7, /kg, is separable for all
large i. Deduce that e(L;/K;) becomes constant for large i (called the ramification
degree e(M/K)), and that e(M/K,) = 1 with ky/kgk. and M/K,, separable if
and only if L;/K; is unramified for all large i. In this latter case we say that M /K
is unramified.

(4) Using finite-level approximations, prove the intrinsic statement that the unramified
finite extensions of K, are in functorial correspondence with finite separable exten-
sions of kg__, just as for K. (This can also be proved more directly using the theory
of henselian local rings.)

(5) Now assume kg is perfect. Prove that [M : K| = e(M/K)[kwm : ki, ], and call
M/ K totally ramified if ky; = kg_,. Prove that M/K,, is totally ramified if and
only if L;/K; is totally ramified for all large ¢, and that every finite extension M/K
is uniquely a totally ramified extension of an unramified extension (just like for K).

FEzercise 13.7.3. This exercise explains why the construction of Ry in (13.2.1) is only inter-
esting when L/Fj is infinitely wildly ramified (i.e., the p-part of the ramification degrees of
the finite subextensions is unbounded).

(1) If k" is the residue field of L, explain why & /p0y is naturally a k’-algebra, and
deduce that Ry = R(OL/p0y) is naturally a k’-algebra. (Hint: R(k') = k'!) Relate
this to the k-algebra structure on R from (4.2.2).

(2) Let L C K be a subextension over Fy for which there is bounded p-part in the
ramification of finite subextensions (e.g., [L : Fp| finite). Using (13.2.1), show that
R, = K'. In particular, show by example that there are nontrivial extensions L — L’
inside of K over F, for which R, = Ry, (so Ry, inside of R does not determine L
inside of K in general).

(3) Can you construct other examples for which R, = k’? Even better, can you make
examples of Z,-extensions L/K such that Ry # k'?

Exercise 13.7.4. Proposition 13.1.9 gives a precise growth estimate on v(Dg, k). But the
proof used some serious input, especially Serre’s geometric local class field theory. If one
is content with the weaker claim that v(® g, /x) — oo then it is possible to proceed in a
more “elementary” manner, using just commutative algebra. The following exercise outlines
Faltings’ argument along such lines.

Let A be a complete discrete valuation ring of mixed characteristic (0, p), and let A be the
valuation ring of a fixed algebraic closure of Frac(A). In what follows, the ring of integers
of a finite extension of Frac(A) in Frac(A) will be called a finite extension of A. If B is
a finite extension of A, we write kg and mp to denote its residue field and maximal ideal
respectively. We assume that [ka : k4] = p? (i.e., ks has a finite p-basis); the case d = 0
corresponds to k4 being a perfect field.

(1) Show that dimy, (€ ,,) = d, and that Qp , can be generated by d + 1 elements.
(Hint: use the second fundamental exact sequence and Nakayama’s lemma).
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(2) Let v: A — QU{oo} be the valuation normalized by v(p) = 1. For § € v(B—{0}), let
p° denote an element in B—{0} whose valuation is §. In particular, the different D 5 /A
has the form p°8/4 B for some g /A € Q5 that we wish to estimate in certain cases.
As a first step in that direction, explain why lengthB(Q}B/A) = lengthz(B/p°2/4B).

(3) Assume now that we are given a sequence of finite extensions

A=A, CA C---CcA,Cc---CA

such that Q- /a,_, admits a quotient isomorphic to (A, /pA)t for all n > 1. If
B is a finite extension of A, let B,, denote the normalization of the B ® 4 A,,, which
is to say the integral closure of A in Frac(B) ®prac(a) Frac(A,). This is a product of
finitely many discrete valuation rings B, ; finite over A (since A is complete). Let
on € Q5o be the maximum of the v-valuations of the ideals Dp, ,/4,. The rest of this
exercise proves that d,, — oo.
First reduce to the case where B,, is a domain for all n € Z,.
(4) Fix n € Z>y, and consider the composite

1 a ol b, 0l
Bn+1 ®Bn QBn/An - QBnJrl/An - QBn+l/An+1
Using (2), show that the sequence

1 1 b o1l
O - Bn+1 ®An+1 QAn+1/A7L - QBn+1/An - QBn+1/An+1 - 0

Is exact.
Then using (1) and the elementary divisors theorem, deduce that ker(b) contains
the kernel of multiplication by p, so that

ker (Bus1 ®p, b, /4, — Bat1 ®p, U, /a,) C ker(boa)

and length(ker(bo a)) > length(B,;1/p" B,.1) where 3, = min(1,4,/(d + 1)).
(5) Using the definition of the discriminant, show that prn B L C B, ® A, Ant1 C
Bp+1. Deduce that coker(ba) is killed by p?»~%+1 and that

length(coker(b ) a,)) < ]ength (Bn+1/p(d+1)(5n—5n+1))

(6) Use (4) and (5) to show that 9, — 0,41 = 5, — (d + 1)(0,, — dps1). Deduce that
0, — 00.

Exercise 13.7.5. This exercise explains where where the terminology “field of norms” comes
from; we work in the setup of §13.3, with L/K a finite extension for which L, is a chosen
finite extension M /K.
Consider the inverse system {0, }n>o using Ny . /., @ O, — Op, as the transition
maps.
(1) For any norm-compatible sequence (z(™),,s,, in the &}, s, note that the reductions
z, = ™ mod a0y, for n > ny, form a p-power compatible sequence in 0;__ /a0 _.
This is not quite an element of R(O_ /a0, ) = Ry, since we haven't fill in the
terms x,, for n < ny. Show that there is a unique way to fill in these missing terms
to get an element of Ry, and obtain a multiplicative map lim &, — E; - R....
(2) Explain why the z,, as just artificially defined for small n usually do not lie in & .
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(3) Prove that the multiplicative map lim &y, — EJ is bijective. In the theory of norm
fields a ring structure is directly defined on lim &, in the spirit of the formulas in
Remark 4.3.2 (except using norms instead of p-power maps), and it makes this map
into a ring isomorphism. (Beware that this procedure for lifting elements of E} to
norm-compatible sequences in the 0, s gives a completely different output than the
procedure that lifts elements of R;_ to p-power compatible sequences in o )

Ezercise 13.7.6. This exercise proves that Frac(R) is the completion of the separable closure
E =UE), of Ex_ (with M ranging through the finite extensions of K, inside of K, so Eys
ranges through the finite separable extensions of Ex_ inside of Frac(R)).

(1) Let E is a complete discrete valuation field of characteristic p > 0, E an algebraic
closure and E, the separable closure of E in E. Show that E\s = E. (Hint: Prove Ez
is perfect by approximating X? — a with X? — 7" X — a for a uniformizer 7 of F' and
large n.)

(2) Let ET denote the valuation ring of E. Using Proposition 13.3.11, show that the

map p, : R — Og, carries ET onto O, for all n > 0, and deduce that Ex is dense
in Frac(R).

Exercise 13.7.7. The weak topologies defined in Definition 13.5.4 satisfy a number of basic
compatibilities that are used all the time without comment. This exercise develops these
properties.

(1) Prove that the weak topologies on A, = W(Frac(R.)) and AJLF = W(Ry) are the
subspace topologies from the weak topologies on A and A respectively.

(2) Using perfectness of Ry, prove that p : A; — A, is a closed embedding for the
weak topology on Aj = W(Frac(Ry)), and prove that the quotient topology on
Frac(RL) = AL/(p) is the vg-adic topology. Prove an analogue for AT = W(Ry),
and show that AJLF is a closed (but not open!) subring of A;.

(3) Prove that the action of Gz, on A = W (Frac(R)) is continuous for the weak topology,
but not for the p-adic topology. (Hint: In the discrete case, what is the induced
topology on the quotient Cy by means of 67)

(4) Prove that A, = W(Frac(Ry)) is a Hausdorff topological ring with a countable base
of opens around every point, so we can test openness and continuity using sequences.
Prove that in A, there is a base of opens around 0 that are AJL’—submodules.

(5) Prove that the topology on A is complete in the sense that if {a,} is a sequence in
A converging to 0 then > a, converges.

Ezercise 13.7.8. Prove that for the p-adic cyclotomic extension K.,/K of a p-adic field K,
the G-action on A factors through the quotient Gal(K./K). (Hint: reduce to the case
K = Fy := W(k)[1/p] and look at the induced action on the residue field Ex, or at least its
valuation ring Ej. ~ k[X].)

Ezercise 13.7.9. Give Ak and A their natural subspace topologies from the weak topology
on the Hausdorff topological ring W (Frac(R)) (so Ax gets the subspace topology from A,
and each has a countable base of opens around any point).
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Prove that the I'-action on Ak is continuous, p : Ax — Ak is a closed embedding,
and the quotient topology on the residue field Eg is its valuation topology. In
particular, deduce that pA is not open in Ak, but show that Ax has a base of
opens around the identity which are ideals, and each of which contains some p"A .
Also prove that A has the inverse limit topology from the A g /(p™)’s. Do likewise
for A with its Gg-action. (Hint: pull everything down from W (Frac(R))).

Prove that Ay is closed in A. (Hint: reduce to checking modulo p™ and carefully
induct on n.)

Prove that the set of units in A is open for the subspace topology. Is inversion
continuous relative to the subspace topology?

Let A be a complete discrete valuation ring endowed with a Hausdorff topological
ring structure relative to which 7 : A — A is a closed embedding, for 7 € A a
uniformizer. (B with the topology from Exercise 4.5.3 is such an example!) Give
every finite free A-module its canonical topological module structure using any A-
basis. Using the structure theorem for modules over a discrete valuation ring, prove
that if M’ C M is an inclusion of finite free A-modules then the subspace topology
on M’ is its canonical topology, and that M’ is closed in M. Deduce that for any
finitely generated A-module NV, if we chose an A-linear presentation

0—-M —-M-—-N-—-0

then the Hausdorff quotient topology on M /M’ transferred to N is independent of
the presentation and is functorial in N.

Prove that for any short exact sequence 0 — N’ — N — N” — 0 of finitely
generated A-modules, if all three terms are endowed with their natural topology as
just constructed, N’ has the subspace topology from N and N” has the quotient
topology from N. Also if A is complete and the natural map of topological rings
A— liinA /m’; is a homeomorphism, then prove the same for any finitely generated
A-module N: the natural topologies on the N/m’;N’s have inverse limit that is
identified with the natural topology on V.

Part (2) gives a canonical topology to all finitely generated modules over Ak and A.
Prove that in Example 13.6.3, the I-action on D(T') is continuous.

In the setup of Example 13.6.3, if the I'-action on D is continuous then prove that
the Gk-action on T(D) is continuous for the p-adic topology. (Using inverse limits,
the key case is when D is a torsion A g-module, for which the claim is that T(D) is
a discrete G g-module.)

Show that Exercise 4.5.3 carries over to define a topology on W (Frac(R))[1/p] (induc-
ing on W(Frac(R)) its weak topology as a closed but not open subring), relative to
which the Gg-action is continuous. Prove that this makes W(Frac(R))[1/p] a topo-
logical field. Giving the fraction fields Bx = Ak[1/p] and B = A[1/p] their subspace
topologies, prove that both become topological fields with Bx and A closed subrings
of B, and prove analogues of (5) and (6) over Bx and B. Prove that every A k-lattice
in a finite-dimensional B g-vector space gets as its subspace topology exactly its own
natural A g-module topology.
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Ezercise 13.7.10. Suppose k is algebraically closed, and consider a fundamental character

¥ : Gg — F of level 1. The associated (¢, I')-module is 1-dimensional over Ex. Can you
p

describe it?

Exercise 13.7.11. This exercise gives properties of the equivalence D between Repg, (Gk)
and ModiK (I') to make Theorem 13.6.5 be useful.

(1) Prove that the equivalence D is compatible with tensor products, preserves rank and
invariant factors (over Z, and A ), and is compatible with duality on torsion objects
and duality on finite free module objects.

(2) How does the restriction functor Repy (Gx) — Repz (Gk/) translate through the
equivalence D? As an application, characterize in terms of D(V') when the G k-action
on V' is discrete (i.e., an open normal subgroup G acts trivially).

(3) How does the induction functor translate through the equivalence? (cf. Exercise
3.4.3)

Ezercise 13.7.12. Let K be a p-adic field and let D be a (¢,I")-module over the local field
Ex ~ k'((u)). This concept only uses the field structure of Ex, not its valuation structure.
By Exercise 3.4.1(6), D always contains a k'[u]-lattice A which is ¢-stable.

(1) Give a determinantal obstruction under which the linearization ¢*(A) — A of ¢p
over k'[u] (not over Ex!) can fail to be an isomorphism for all such A, and construct
such an example in the 1-dimensional case (cf. Example 3.3.3).

(2) Adapting the proof of Lemma 1.2.6, show that A can be found so that it is also
['-stable. In other words, in a suitable Eg-basis of D we have that the matrix of ¢y,
is in Mat,(k'[u]) and the (honest!) matrix of every v € I lies in GLg4(k'[u]), where
d = dimg, D.

Ezercise 13.7.13. In the definition of an étale (¢, ')-module over By, does it suffice that
there is a p-stable A g-lattice (with étale Frobenius structure)? That is, given such a lattice,
does continuity of the I'-action enable us to find one which is I'-stable? (Keep in mind that
Ak is not open in B, so the solution to Exercise 13.7.12(2) does not apply.)

14. THE TATE-SEN FORMALISM AND INITIAL APPLICATIONS

In the early days of p-adic Hodge theory (before Fontaine came on the scene), the basic
object of study was a finite-dimensional Cg-vector space V equipped with a continuous
semilinear action by Gx. The Hodge-Tate objects were quite well understood by Tate,
and Sen studied the Galois cohomology set H' (G, GL4(Ck)) (using continuous 1-cochains)
which classifies isomorphism classes of all d-dimensional objects in the category Repg,. (Gk)
of finite-dimensional continuous semilinear representations of Gk over Ck (Exercise 14.4.1).
Tate had studied the cohomology H!'(G g, Ck(r)) which classifies 2-dimensional extension
classes of Ck(r) by Cg, a rather more special kind of problem.

The methods Sen developed (building on ideas of Tate) were adapted to other contexts
(to prove the overconvergence of p-adic representations, to associate a differential module
to a p-adic representation, etc.) Roughly speaking, the method is a descent followed by a
“decompletion” (i.e., undoing a completion). To better understand the arguments, Colmez
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([12, §3.3], [3, §3]) developed a general Tate-Sen formalism. In this section we explain the
basic formalism and give several applications. Our exposition of the Tate-Sen formalism is
modeled on the presentation by Berger and Colmez in [3, §3].

14.1. The Tate-Sen conditions. In Tate’s initial work on p-divisible groups, he showed
that in certain Cg-semilinear situations one could kill a lot of cohomology by restricting to
Gk, where K, /K is an infinitely ramified Galois extension for which I' := Gal(K/K)
is isomorphic to Z, near the identity. (The most important example is Ko, = K (pp), in

~

which case we define K,, = K((,n).) Letting H := Gk = ker(Gg — T), since C¥ = K,
(Proposition 2.1.2) we have a left exact “inflation-restriction” sequence of pointed sets

1 — HY([, GLy(Ko)) — H' (G, GLa(Ck)) — H'(H, GLyg(Ck)).

In other words, if V' € Repg, (Gk) of some dimension d > 0 admits a Cg-basis of H-invariant
vectors (this is what is means to say the isomorphism class of V' in H'(Gg, GL4(Ck)) is
killed under restriction to H; see Exercise 14.4.1) then the action of ' = G /H on such
basis vectors must be described by matrices with coefficients in CH = K. That is, in such
cases if we define W = V¥ then we would have Cx ® g W=V (so in particular, W is

finite-dimensional over I?Oo of dimension dimg,, V). Note that it is not obvious at this point
whether W # 0 when V' # 0 for general V.

Following Serre’s conventions in [45, Ch. I, §5] and [44, Ch. VII, App.], if an abstract
group G acts on another group A on the left then a 1-cochain a : G — A is a function such
that a(gg’) = a(g) - g(a(g’)). For example, taking ¢ = ¢’ = 1 gives a(1) = 1, and taking
g = gt gives that a(g)™ = g(a(g™')). We call two 1-cochains a and a’ cohomologous if there
is an a € A such that a/(g) = a ta(g) - g(a) for all g € G. This is an equivalence relation
and the quotient set is denoted H!(G, A). (For example, a is cohomologous to 1 precisely
when a(g) = a~g(a) for some a € A; these are the 1-coboundaries.) When G and A are
topological groups and the action map G x A — A is continuous we make similar definitions
using continuous cochains, and usually write H'(G, A) with this modified meaning (called
“continuous cohomology” ).

Sen showed that for all V' this procedure works: V = Cg ®p_(V*), and the two functors

Vs VI W s C @ W

define quasi-inverse equivalences between Repg, (Gk) and Repg_(I') (i.e., equivalence be-
tween categories of finite-dimensional continuous semilinear representation spaces, giving

K, its valuation topology). In particular, he showed that the inflation map
HY(T', GLy(K+)) — H'(Gk, GLy(Ck))

is bijective. Note that such bijectivity (as we vary d) is a weaker assertion than the equiva-
lence of categories: it merely says that each object of Repg, (Gk) descents to an object in
Rep R@(F) that is unique up to non-canonical isomorphism, but it says nothing about the
important issue of descent for morphisms (i.e., functorial aspects of the descent).

Sen actually went a step further and developed a “decompletion” process to show that
Repz (I') and Repg_ (') are equivalent, where in this latter category of semilinear repre-
sentations we require continuity relative to the valuation topology on the coefficient field K
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(i.e., we do not consider only discrete semilinear I'-modules over K, which are all trivial
objects by Galois descent!).

To carry out the descent from Cg to K. and the “decompletion” from Ko to K, Sen
adapted Tate’s method of “normalized traces” which Tate had used to great effect in his study
of the p-adic representations arising from abelian varieties over K with good reduction. The
idea is tAhat close work with the H-action should relate structures over Cx to structures over
Ci = K, but to get down to K, = UK,, one needs a family of “trace maps” K., — K,
linear over K, for all n, where {K,} is an exhaustion of K, by an increasing sequence of
finite extensions which become the layers of a Z,-extension for large n.

We now introduce the ingredients of the Tate—Sen formalism and simultaneously illustrate
them in the setting of Sen’s work (to be called Sen’s situation).

Input 1: profinite groups. We fix a Z,-algebra A that is p-adically separated and
complete (so A* is open in A with subspace topology that makes it a topological group), and
we fix a profinite group Gy endowed with a continuous character ¢: Gy — A* having image
1 (Gyp) that contains Z, as an open subgroup. In other words, topologically 1(Go) =T x p
with I' a finitely generated Z,-module of rank 1 and p a finite commutative group of order
prime to p. (A typical example is A = Z, and any ¢ with infinite image in Z);. But we
also wish to allow maps valued in & for finite extensions E/Q, such that ¢ (Gp) is a 1-
dimensional p-adic Lie group.) We write I',, to denote p"I', so for sufficiently large N we
have that I'y ~ Z, with I',; 5 its unique subgroup of index p" for each n > 0.

Let Hy = ker(¢) and for g € G define n(g) € Z>o U {oo} to be the least n > 0 such that
¥(g) € i1, For example, n(g) = +oo precisely when g € Hy and n(g) = 0 if ¢¥(g) € I.
[Sen’s situation is Gy = Gk, A the ring of integers of a finite extension of Q, contained in
K, and ¢ any A*-valued character whose splitting field denoted K, /K has Galois group
Gal(Kw/K) = ¢(G) that is commutative with open pro-p part I' which contains Z, as an
open subgroup; in particular, K is a Z,-extension of a finite extension of K. In this case
Hy = Gk, with K, = UK, where K,, = ker(¢) mod I',)) for n > 0. In this situation n(g) is
the biggest n for which g is trivial on K,,; we say n(g) = 400 if g € G ]

For any open subgroup H in H, which is normal in GG, we define Iy = Go/H, so there is
an exact sequence

1 — Hy/H — Ty = Go/H — Go/Hy = (Go) — 1,

with Hy/H a finite group since H is open in Hy. [In Sen’s situation, H = G for a finite
Galois extension L/K, in which case I' = Gal(L,/K) and the above short exact sequence is
the natural one from Galois theory, with Hy/H = Gal(Lw /K ) and Go/Hy = Gal(K o/ K).]

The continuous map ¥ : G — A* must be a quotient map onto its open image, so it
is an open map onto its image. Thus, for any open subgroup G in Gy, the image ¥(G) is
open in ¥(G) = I' x u and hence contains I',, for a minimal n > 1; when G is normal in
Gy we define n;(G) be this least such n. [In Sen’s situation, G = G, for a finite Galois
extension L/K, and n;(G) is the least n > 1 such that L, = LK, is linearly disjoint from
K, over K,.] This definition of n,(G) makes sense even if G is not normal in Gy, but to
make later considerations work when G is not normal in GGy one needs to actually generalize
the definition to the non-normal case in a different way. (See Remark 14.1.8.)
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Observe that the group H := G N Hy = ker(¢|¢) is normal in Gy and open in Hy, and
Gy acts via conjugation on the subgroup G/H = ¥ (G) of Go/H = 'y through conjugation
by evaluation of the character ¥ : Gy — 1¥(Gp). But (Gy) is commutative, so therefore Gy
acts trivially on G/H. Hence, G/H is central in T'y. [In Sen’s situation, this says that for
L/K finite Galois, Gal(Ls /L) is central in Gal(Le/K); this is obvious since Gal(L/K)
acts on Ly, through evaluation of a commutative character.]

Input 2: valued rings. We let A be an A-algebra (not necessarily a domain) equipped
with a map v, : A —RU {+00} such that for all z,y € A the following weakening of the
valuation axioms (in the spirit of a semi-norm) are satisfied:

(1) va(x) = +oo if and only if x = 0, and vp(£1) = 0;
(2) va(z +y) > min (va(z),va(y));
(3) valzy) Z va(x) 4+ va(y);
(4) va(p) > 0 and vp(px) = va(p) + va(x).
We allow the possibility that p = 0 in A (in which case vy(p) = 400 and axiom (4) is
redundant). Axiom (3) implies that vy(—x) > vp(z) for all z, so swapping = and —z gives
vpA(—x) = vp(x) for all z.

The ring A is endowed with a topological ring structure by using the additive subgroups
AZe = vxl([a, +0o0]) as a base of opens around 0; these are ideals under the open subring
A0, This topology is Hausdorff by axiom (1) and every point has a countable base of open
neighborhoods, so we can probe the topology using sequences. [In Sen’s situation, A=C K
with vy given by the usual valuation, say with the normalization v(p) = 1. Note this does
impose the right topology on Cgk.|

We assume that A is complete for this topology; this means that if {z,},>0 is a Cauchy
sequence in A (in the sense that for all C' > 0 there exists N such that va(z, — Tyy) > C for

all n,m > N) then it converges in A. For example, if {a, >0 is a sequence in A then 3 ay,
converges if and only if a, — 0. [Such completeness clearly holds in Sen’s situation. |

We also assume that A is endowed with an A-algebra action by G that leaves v, invariant
(“isometry”) and is moreover a continuous action. Continuity is stronger than “isometry”,

since it requires that for each € A we have v)(g(z) — ) — oo as ¢ — 1, which does not
seem to formally follow from the other running hypotheses. [In Sen’s situation we use the
usual G g-action on Cg, for which the isometry and continuity hypotheses are satisfied.]

We define a measure of “size” on matrices by applying va to the coefficients (and its
elementary properties are worked out in Exercise 14.4.3):

Definition 14.1.1. For any d > 1 and M = (m,;) € Maty(A) let
oA (M) := I(nn)l va(m;;) € RU {4o00}.

Remark 14.1.2. Since G acts continuously on GLd(K), it makes sense to form the pointed set
of continuous cohomology H!(G, GLd(K)) when G is any subgroup of G (with the subspace
topology). This classifies isomorphism classes of finite free A-modules equipped with a
semilinear action of G that is continuous for the natural topology of finite free A-modules
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(Exercise 14.4.1). For example, in Sen’s situation with G = Gy = G this is exactly his
problem of studying the pointed set H' (G, GL4(Ck)) classifying d-dimensional continuous
semilinear representations of G over Cg.

Now we formulate the Tate—Sen axzioms. These come in three parts and are rather
complicated-looking at first sight, so we state each axiom in turn and verify each for Sen’s
situation before moving on to the next axiom .

As a review, Sen’s situation ([49, §3], [40], [23, §2], [3, §4.1]) involves the following setup.
We take Gy = Gk for a p-adic field K, 1 any infinitely ramified character valued in the
units A* of a finite extension of Q, contained in K (especially A = Z, with 1 the p-adic
cyclotomic character) such that the splitting field K, /K is abelian and is a Z,-extension
of a finite extension of K, and Hy = Gk, with K., = UK, for K,, = KZ' where T is the
pro-p part of ¥(G ). We also take A = Cg with vy the usual valuation v (i.e., the one for
which v(p) = 1). In particular, for any finite Galois extension L/K and its corresponding
open normal subgroup G = G, in Gk, we have H := GNHy =G and 'y = Gal(L/K).
We define L,, ;= LK, for all n > 0. By Proposition 2.1.2, we have AP = Eoo.

Axiom (TS1). We assume there is a constant ¢c; € R~q such that for all open subgroups
H, C Hy in Hy that are normal in G, there exists an o € AH satisfying vy (o) > —cy and
ZTEHQ/Hl (o) = 1.

The sum in this axiom is a kind of trace, and this axiom is related to constructing “nor-
malized traces” in later arguments. In Sen’s situation it is a direct outgrowth of Tate’s

“almost étale” result in Theorem 13.1.2. To better understand what the axiom means, we
NOwW prove:

Lemma 14.1.3. Aziom (TS1) is satisfied in Sen’s situation with any c¢; > 0.

Proof. Let Hy C Hs be open subgroups of Hy = Gk... (We will not need normality.)
These correspond to finite extensions M;/My/K.,. We pick a finite extension L of K such
that My = L., and by Theorem 13.1.2 applied to the extension M; of L., = My we have
M, C Traga(On). In particular, since M,/ L is infinitely ramified there are elements
of my, with arbitrarily small valuation. Hence, we can pick a € my;, with v(a) < ¢,
and there exists ag € Oy, such that Trag ar,(ap) = a. Hence, @ = a™'ay € M, satisfies
Tras i, (@) = 1 and v(a) = v(ag) — v(a) > —c;. [

The next axiom is somewhat of a mouthful (it has five conditions, involving an infinite
family of maps and closed subrings), so we will first work out the version in Sen’s situation,
and then state the axiom in general.

Pick a finite extension M /K, Galois over K corresponding to an open subgroup H C Gk,
normal in G, and choose a finite extension L/K such that L., = M. Since M is Galois
over K, it contains the Galois closure of L over K in K, so by replacing L with this Galois
closure we may and do arrange L/K to be Galois (so all L,, = LK, are also Galois over K).
Replace L with some L,, if necessary so that L/L,,) is a totally ramified Z,-extension for
some no(L) > 0 and L is linearly disjoint from Ko, over K, ). Hence, for all n > ny(L) we
have L, = K, ®k, ., L, 50 Ly = Ky ®r, Ly for m 2 n = no(L). This ensures that Tr, /1,
restricts to Trg,, /K, on K, whenever m > n > ng(L). We will use this compatibility shortly.
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Since [L, : L,] = p™ " for all m > n, the following L,-linear “normalized trace” map is
well-defined:

Ryp: M = Lo — Ly,

xHWTer/Ln(I) if!)ﬁ'ELm

(The point is that Ry, (z) does not depend on the choice of m > n for which z € L,,.)
Obvious Rasp|r, is the identity map. Also, since we arranged that Try ;. is a scalar
extension of Trg, /k, for m > n = no(L), if M'/M is a finite extension also Galois over K
corresponding to an open subgroup H' C H normal in Gk and if L'/L is a finite extension
Galois over K such that L = M’ (as we may always find for any M’) then Ryp n|p = Ryn
for n > max(ng(L), no(L’)). This is a useful compatibility property of the Rys,,’s as we vary
M and work with large n.

The utility of the normalized traces is that for large enough n they are bounded linear
operators over L,,, and so define a topological splitting M = Lo, = L, @ ker(Rys,,). Such
boundedness, with an additional uniform control on the bounding constant, was already
present in Tate’s work and is the content of:

Lemma 14.1.4. For any co € Rsg there exists n(H) > no(L) such that v(Ryn(x)) >
v(z) —cy for alln > n(H) and x € Ly,. Equivalently, if n is sufficiently large (depending on
co and H) then Ry, is a bounded L, -linear operator with operator norm at most p®.

Proof. We apply Proposition 13.1.9 to the totally ramified Z,-extension Lo./Ly, 1) to get a
constant ¢ and a bounded sequence {ay, }r>nq(r) such that v(@Ln/LnO(L)) =n+c+p"a,. Fix
n = ng(L), so by transitivity of the different we get v(Dy, /1,) = m —n —p "a, +p™a,, for
all m > n. But we have the the following general equivalence ([44, Ch. III, Prop. 7] applied
to Ly /Ly):

Try,/p.(my ) Cmp < m) C miLni);;/Ln.

We conclude that for for « € L,,, Try, o, (z) € m} if and only if Dy, /1, C my Op,..
Hence, v(Try,, /1, (2)) = v(z)+v(Dr,. /L, ), which is to say v(Rar,(2)) = v(x) —p "an+p" .
We can therefore choose n(H) > ny(H) to simply be big enough such that 2p~"|a,| < ¢ for
all n > n(H) (which can be done since {a,} is bounded). [

Due to the boundedness of the L,-linear operator Ry, provided by Lemma 14.1.4 (for
n > n(H)), the map Ry, extends by continuity to an L,-linear section Ry, of the inclusion
L, = Lo, = C4 for which the conclusion of Lemma 14.1.4 applies. In particular, Ry, splits

off L,, as a closed subspace of EOO. That is, M = L,® ker(}A%Mvn) as L,-Banach spaces.
The following axiom (TS2) encodes information concerning the completed normalized

traces Ry, = R, as well as the conclusion of Lemma 14.1.4 applied to these completed
maps (especially the “uniformity” of ¢y as H varies).

Axiom (TS2). We assume there is a constant co € R~q such that for all open subgroups
H C Hy that are normal in G there exists data {Ap n, Rin fnsncm) consisting of an increasing
sequence of closed A-subalgebras Ngr,, C A" and A-linear maps Ryp: AT — A, for which
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(1) if Hy C Hy and n > max{n(H;),n(Hsz)}, then Ay, ,, C Ay, and the restriction of
Ry, to A2 coincides with Ry n;

(2) Run a App-linear section to the inclusion Ay, — AH

(3) 9(Apn) = Amy and g(Run(z)) = Run(gz) for all z € AH and g € Gp;

(4) vaA(Run(z)) = va(x) — ¢o for all z € AH;

(5) lim Rpn(z) =z for allz € AH.

We emphasize that by part (2), the map Rp, is a Ag,-linear projector, so Xp, =
ker(Rp,,) is a closed Ap,-submodule of AH and there is a topological decomposition A =

Agn @ Xpgn. Also, part (3) just says that an action by [y = Go/H makes sense on Ry,
and is trivial.

Remark 14.1.5. Tt is natural to wonder why we begin the indexing with n(H) instead of
relabeling all indexing to begin at n = 0 for each H. The point is that in practice it happens
that axiom (TS2) may continue to hold if we shrink ¢, provided that in axiom (4) (the only
place where ¢y appears!) we drop the data (Ay,, Ry,) for some small n depending on H.
So for simplicity of notation in such cases, it is best to give ourselves the flexibility of the
parameter n(H) that depends on H (and cy).

In Sen’s situation Ay, = L, and Ry, = }Aszn for M/K,, corresponding to H. Axiom
(TS2)(1) is exactly the compatibility condition §M17n| M= ﬁMm noted already for these
(completed) normalized traces as we vary the finite extension M /K, and axiom (TS2)(2)
encodes the fact that the normalized traces (after completion) are sections to the inclusion
map. This property has already been noted before completion and is certainly preserved by
passage to the completion. Axiom (TS2)(4) in Sen’s situation is exactly the conclusion of
Lemma 14.1.4, combined with passage to the completion. For the remaining parts of (TS2),
we NOW prove:

Proposition 14.1.6. Aziom (TS2) is satisfied in Sen’s situation with any cy > 0.

Proof. We have already discussed parts (1), (2), and (4). Conditions (3) and (5) require
some additional argument, as follows. Since L/K is Galois, so is L, = Ay, for all n. Hence,
for m > n we have a conjugation action by Gy = Gk on the finite group Gal(L,,/L,), so
using the Galois-theoretic formula for trace maps we get goTr,, /1, = Trr,, /1, 0g. Plugging
this into the definition of the normalized traces Lo, — L, for n > n(L) gives that they are
also Gy-equivariant, and hence they remain S0 after passing to the completion.

It remains to treat part (5). Pick any x € L = A® and any C' € Ryy. We need to prove
v(x — ﬁMn(:c)) > C for all large enough n. Choose y € L, such that v(z —y) > C + co,
and pick m > 0 such that y € L,,. Using part (4) to estimate §M7n(y — ), we get

v(@ = Rara()) = minfo(z = y), v(y = Rarn(9)), v(Baraly — 2))} > min{C,v(y = Rusn(y))}-

But by taking n > m as well, we have Ry, (y) = y by parts (1) and (2), so for such large n
we have v(z — Ry, (z)) = C as required. |
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The final axiom of the Tate-Sen formalism describes how Gy acts on the complement to
A, in A# provided by the splitting defined by the section Ry,

Axiom (TS3). We assume there is a constant cs € R~ such that for every open normal
subgroup G C Gq (and associated open subgroup H := G N Hy in Hy that is normal in G)
there is an integer n(G) > max(ny(G),n(H)) for which

(i) v — 1 is invertible on Xg,, :=ker(Ry.,) = (1 — Ru,) (A7),
(ii) va(z) Z va((y — 1)(2)) — ¢3 for all v € Xp,

for alln > n(G) and all v € Ty = Go/H satisfying n(v) = v(¥(y) — 1) < n.

This axiom says that 7 — 1 has a bounded linear inverse on ker(Rp,) (controlled by the
constant c3) provided that n is large enough (depending on G) and 7 is not too close to 1
(depending on n). We have to restrict to ker(Rp,,) to say anything about an inverse to y—1
since on the complement Ay, of ker(Ry,,) in AH the action of some open subgroup of I'y
may be trivial (e.g., in Sen’s situation Ay, = L, has trivial action by Gal(Le/Ly)).

Note also that since we require n > n(G) > ny(G) in (TS3), necessarily I',, C ¢(G). Thus,
there are lots of elements v in the open subgroup G/H C 'y for which n(y) = n. The only
purpose of requiring n(G) = ny(G) is to ensure that there are many v € G/H with n(y) < n.
We will not actually use that n(G) > ny(G) in the proof.

Proposition 14.1.7. Axiom (TS3) is satisfied in Sen’s situation for any cz € Rs1.
Proof. Fix ¢; > 1 and pick a finite Galois extension L/K. Let G = G, and define
H = Gal(K/L.) = G N H,

(open in Hy and normal in Gy), and choose n > n(H). Pick v € Ty = Go/H. If z € A¥ =
Lo then (y — D)(Run(x)) = Run((y —1)(z)) by (TS2)(3). Thus, for Xg,, = ker(Rpy,) we
have (v — 1)(Xan) C Xgn. Moreover, Xp,, Nker(y —1) C Xpgpn N Ly = {0} if 7 satisfies
n(y) <n (as Ly € Ly, for such ). The map v — 1 therefore induces an K-linear injection
from Xp, N L, to itself when n(y) < n < m. But Xp, N L,, is finite-dimensional over
K, so this injection is an isomorphism. Hence, (v — 1)(Xg, N Ly,) = Xgn N Ly, whenever
n(y) < n < m. Taking m — oo, if n(y) < n then y—1 induces a bijection from Xy, N Ly to
itself. But Ry, = J?Loo’n is defined by passage to the completion of a projector on L., so the
complement Xg ,, to L, defined by the projector Ry, is the completion of its intersection
with L. Hence, v — 1 restricts to a bijection of Xy, to itself whenever n(vy) < n provided
that 7 — 1 has a bounded inverse on Xy, N Lo (and hence the inverse in the completion
X is bounded using the same bounding constant).

It remains to prove that the inverse to v — 1 on Xp, N Ly is bounded, with bounding
constant governed by c3 as in the statement of (ii) (for x € Xpg, N Ly). To prove this,
we shall use induction on m > n to construct a sequence {dy, }m>n in Rso such that v(z —
Ryn(x)) = v((y — 1)(x)) — d,, for all @ € L,,. These d,,’s will be constructed so that
dm < 1+bp'=™/(p—1) for some b > 0, so it will then suffice to take n(G) large enough such
that 14 bp' ™9 /(p — 1) < cs.
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To find such d,,’s, we will induct on m. First consider the case m = n. In this case the
required estimate is +00 > v((y — 1)(z)) — d,, for all = € L,,, so we can take any finite d,, at
all. For later purposes we take d,, = 0.

Now take m > n (so m > n(v)) and assume we have constructed the sequence up to stage
m (so d,,, = 0 if m = n). We need to find d,;,41. Pick 2 € L1 and let y = %TerH/Lm (x) €
L,,. By definition of the normalized traces we have Ry, (z) = Run,(y), so

v(# — Ry pn(x)) 2 min{o(z —y), v(y — Run(y))}-
Thus, we seek suitable lower bounds on both v(x — y) and v(z — Ry ,(v)).
To handle v(x —y), recall that L,,,1/L,, is cyclic of degree p. Its Galois group is generated
by A=) 50
p—1
pr—py =2 (1=+"""")(@) = (1= (P()(x)
i=1
for some P € Z[X]. Thus, v(p(z—y)) = v((y—1)(x)). This says v(z—y) = v((y—1)(x))—1.
Turning to v(x— Ry, (y)), we apply Proposition 13.1.9 to the totally ramified Z,-extension
L. /L, to get a constant ¢ and bounded sequence {a;};>o such that (using transitivity of
the different) v(”DLj,/Lj) =j'—j+c+p" 7 a; whenever j' > j > 0. In particular, we have

where {by, }m>n is a bounded sequence. Pick b € Ry such that b > |b,,| for all m > n. As
in the proof of Lemma 14.1.4, we have
for all z € Ly,4;1. Taking z = (y — 1)(x), this yields

o((y = Dlpy) = v((y = D(x)) +1-bp™™,
which is to say v((y — 1)(y)) = v((y — 1)(z)) — bp~™. But since y € L,, we have v(y
Run(y)) = v((y —1)(y)) — dm by the assumed existence of d,,. Thus, v(y — Ruyn(y))
v((y = 1)(2)) = dp = bp™™.
Combining our two lower bounds, we get v(z — Ry, (z)) = v((y — 1)(x)) — dpmy1 where
dpmy1 = max{l,d,, + bp~™}. This completes the inductive construction of the d,,’s, and
from the actual recursive definition (and the initial value d,, = 0) we see that

>

1-n

p
p—1
as required. This completes the proof. |

Aoy <1 4Hbp™" +0p™" 24 +bp ™ <1+b-

Remark 14.1.8. The above axioms will suffice for our purposes, but we note that one can
formulate modifications of Axioms (T'S2) and (T'S3) to allow the open subgroups H C H,
and G C Gy to be non-normal (and then drop the normality requirement in (TS1)). To make
sense of this, some definitions need to be generalized. First, for general such G we define I'y
to be the quotient N¢,(H)/H, where N¢,(H) is the normalizer of H in Gy. For this to be
useful we must check that Ng, (H) is actually open in G. Here is a proof of openness. Since
a closed subgroup of a profinite group is profinite for the subspace topology, open subgroups
of Hy that are normal in G are a base of open subgroups in Hy. Thus, since H is an open
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subgroup in Hy, there exists a subgroup N C H that is open in Hy and normal in Gy. Now
consider the resulting containment of finite subgroups H/N C Hy/N inside of Go/N, with
Hy/N normal in Go/N. Since (Go/N)/(Hy/N) = ¥(Gp) ~ I' x p acts continuously via
conjugation on the finite Hy/N, some open subgroup of Gy/N must centralize Hy/N (as the
permutation group of the finite set Hy/N is finite). The preimage of this in Gy is an open
subgroup that normalizes H, as desired. In particular, fH is open in Go/H in general, so
Vil — ¥(Gyp) is an open mapping,.

Having defined r g for any open subgroup H in Hy, we next need to properly define n;(G)
for any open subgroup G in Gy. This is defined to be the smallest integer n > 1 such that
I', CY((G/H) N Cy), where Cp is the center of I'y. (Recall that when G is normal in Gy
we proved that G/H is central in r u, so in the normal case we recover the earlier definition
of n1(G).) To make sense of this definition of ni(G) as a finite integer it suffices to prove
that (G/H) N Cy is open in Ty (as we have already seen that v : Ty — ¥(Gy) is an open
mappmg) Since G/H is certainly open in Ty, the problem is to check that C'y is open in
FH To prove such openness for Cpy, let N be the kernel of the restriction of ¢ #lor £
r i, so N is finite and 1##*r induces a continuous injective map Ty /N — T" whose image
is open and even isomorphic to Z,. Thus, FH is topologically a semi-direct product of Z,
against the finite (discrete) group N . Its center C'y is therefore an open subgroup.

These two generalized definitions allow us to make sense of (TS2) and (TS3) in the non-
normal case, provided we make one further modification in (TS2): for part (3) we should
instead require g(Ap ) = Agrg-1, and g(Ru . (2)) = Rypg-1 ,(gz) for all z € A and g € G,.

We conclude our introduction to the Tate-Sen axioms by proving a very useful lemma of
Tate in the context of Sen’s situation.

Lemma 14.1.9. Let Ko /K be an infinitely ramified Z,-extension, and 7o a topological
generator of I' = Gal(Ky/K). For any A € 1 + mg that is not a p-power root of unity, the

bounded K -linear operator v — \ on K., s bijective.

The proof even shows that the inverse K-linear operator is bounded.

Proof. By (TS3) there is a I'-equivariant splitting K. = K ® X of K-Banach spaces such
that 7o — 1 acts bijectively on X with (7o — 1)~! bounded on X and having operator norm
at most p® (with c3 as in the axioms (TS3)). Due to the uniformity when varying G in
(TS3)(ii), if we pass to any K, in place of K then 72" — 1 acting on the corresponding a
closed subspace X,, C X complementary to K, in [A(oo has inverse whose operator norm is
bounded above by the same constant p®. This will be crucial.

Since A # 1, we see that 79 — A acts invertibly on K. Thus, we just have to check that it
acts bijectively on X. Consider the factorization

Yo-A=(—-1D—-A=1)=(-1)1-X=1H-1").

The factor vy — 1 acts invertibly on X, so it would suffice that the other factor on the right
acts invertibly on X. If v(A—1) is large enough (depending on 7) then the bounded operator
(A—1)(7 — 1)~* on X has sup-norm strictly less than 1, so by completeness of X we can
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use a geometric series expansion in bounded K-linear operators to construct the required
inverse on X.

It remains to deal with the possibility that v(A—1) is not big enough. But for large enough
r the 1-unit A\?" is distinct from 1 and arbitrarily close to 1, so by our above observation
concerning the uniformity aspect of (TS3)(ii) we see that the K-linear 47 — X" acts bijectively
on IA(OO if r is large enough. Since 79 — A divides this operator in a commuting manner, it
also acts bijectively on I?oo. |

14.2. Consequences of the Tate—Sen axioms. We now work in the general setting of
the Tate-Sen axioms. For any open subgroup H in H, that is normal in G, define the
“decompletion”
AH,oo = lli)l’l AH,n C AH
n>n(H)
[In Sen’s situation, if H = G for a finite extension M/K,, that is Galois over K, and
a finite Galois L/K such that Lo, = M, we have Ay, = li_n}an = Lo = M inside of

~ —

A = CH = M.] Consider the direct limit of inflation mappings given by
(14.2.1) ic  lim lim H'(T'g7, GLg(Apr,)) — H'(Go, GLa(A)),

H n

where the limit is taken over n — oo and then H — Hj. Intuitively, we want to imagine that
the left side is H'(Go/Ho, GL4(Af o)), but in general we have no topological information
about Ay o to justify such a passage of the direct limit through the cohomology. (In fact,
this does not really matter, since the limit of the cohomologies will be entirely sufficient for
our needs. It is just a psychological bonus if the limit can be moved inside.)

In the Sen situation the commuting of limit and cohomology is valid. To see this, first
note that in this situation the map iq is the inflation map

lim lim ' (Gal(Leo /K), GLg(Ly,)) — H'(G, GLa(Ck)).
L/K n

By Exercise 14.4.4, the inner limit is H'(Gal(Ls/K), GL4(Ls)) and the inflation map to it
from H'(Gal(K,/K),GL4(K.)) is an isomorphism. In other words, the entire left side is
H'(Gal(K,/K),GL4(K)) (which is to say precisely that we have moved the entire limit
inside of the cohomology)!

By consideration of Sen’s situation, we see that a bijectivity result for the map i¢ in
general is to be viewed as a combination of descent and decompletion. It is precisely such
a bijectivity result in the general setting of the Tate-Sen formalism that will be the main
result of this section. To get there, we have to prove a number of technical lemmas. Since
we are trying to carry out a descent and decompletion, we basically have to figure out ways
to approximated cocycles over a “big” ring by those over a “small” ring. In Sen’s situation,
all approximations are p-adic. In the general axiomatic setting, p-adic approximation and
vp-adic approximation are two different things. Hence, the argument sort of becomes twice
as long in the general setting.

Throughout the lemmas below, the constants cq,co,c3 are as in the Tate—Sen axioms.
The first lemma says that if a 1-cocycle is close enough to the trivial cocycle then it is
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approximately a coboundary (and with bootstrapping will later be proved to really be a
coboundary, with good control on a choice of 0-cochain yielding this coboundary). The
strategy of the proof goes back to the classical proof of Hilbert’s Theorem 90, which rests
on a cocycle construction involving an element with trace 1.

Lemma 14.2.1. Let H be an open normal subgroup of Ho and choose a continuous 1-cocycle

h+— U, on H valued in GLq(A). Pick x € (c1,+00], and assume that vA(Up — 1) = © and
Un € 1+ p™Maty(A) for all h € H. Then there exists B € GL4(A) such that

(1) va(B—=1) >z — ¢y and B € 1 + p™ Maty(A);
(2) vaA(B7*ULW(B) —1) =22+ 1 for allh € H.

Proof. First note that for h € H we have vy (Uy) = min{vy (U, — 1),v4(1)}, so va(Up) = 0.
By continuity, there exists an open subgroup H; C H (which we may then shrink to be
normal in Gy) such that vA(U, — 1) >  +¢; + 1 for all h € Hy. By (TS1), there exists
a € A such that vy () > —c; and > ren/m T(@) = 1.

Let T C H be a set of representatives for H/H,, and define B =) __ 7(a)U; € Maty(A).

We have B —1 = Y, 7(a)(U; — 1), s0 1a(B —1) > o —¢; and B € 1+ p™ Matg(A).
But z — ¢; > 0, so by Exercise 14.4.3 we see that B is invertible and vy(B™! — 1) > 0. In
particular, vy(B~!) > 0. Using the definition of B and the 1-cocycle condition, for each
h € H we have
Unh(B) = hr(a)Uph(Uz) = Y hr(a)Up-.
TeT TeT

Fix h € H. For 7 € T (as for any element of H), there exists unique 7 € T and hy € H,

such that hT = 7/h;. Since

UA (U.r/h1 - UT/) = 'UA(UT/T/(Uh1 — 1)) UA(UT/) + UA(Uh1 — 1)

>
= S(Z"—Cl—i‘l

and h7(a)Up, = 7'(a)Upp,, we have vy (h7(a)Up, — 7/(a)Uy) > x4 1. Thus,
vA(Uph(B) — B) >z + 1,
so vA(B7rULW(B) — 1) > z + 1 since vy (B™1) > 0. [ |
Now we bootstrap the preceding lemma to find B yielding a much better conclusion:

Proposition 14.2.2. Under the hypotheses of Lemma 14.2.1, we can find B there so that
in addition B~'U,h(B) = 1 for all h € H. In other words, the 1-cocycle h +— U, is a
1-coboundary of the form U, = B - h(B)™! (h € H), where B =1 mod p™ and vpA(B —1) >
r —Ct.

Proof. We apply Lemma 14.2.1 repeatedly to construct a sequence {B,, },>0 in GL4(A) such
that for all n > 0 we have

(i) va(B, — 1) 22 +n—c; and B, € 1 + p™ Maty(A);
(ii) va((BoBy -~ - Bp) "Uph(BoBy -~ By)) =z +n forall h € H
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Since A is complete for the topglogy defined by vy, property (i) implies that the produft
B =112, B, converges in GL4(A). By passage to the limit, we also have B € 1+p™ Maty(A)
and vy (B — 1) > = — ¢;. Property (ii) then implies that B~'U,h(B) =1forallhe H. A

The next lemma says that if a matrix M over A¥ is close to y(M) for v € I'y that is
not too close to 1 (so v is an approximate “topological generator” for the group I'y; which
is isomorphic to Z, near the identity) then M has all entries in Ag,, for a suitable n, and
that if M were also invertible over A¥ then it is also invertible over Ap . (This last point
is a triviality in the Sen situation for which the coefficient rings are valued fields, but in
other settings this descent of invertibility is not a tautology. For applications to descent of
1-cocycles valued in GLg(Af), it is clearly essential to keep track of the invertibility property
under descent of matrices.)

Lemma 14.2.3. Let G be an open normal subgroup of Go, and pick n > n(G). Define
H = G N Hy, and choose v € Ty such that n(vy) < n. For an M € Matg,xq, (A7) with
di,dy > 1, assume there exist U; € GLg,(Ap,n) such that:

(1) vA(Uy — 1) > ¢3, vaA(Uy — 1) > c3;

(2) (M) = U1 MUs.
Then M € Matg,xa,(Aun). Moreover, if d = dy = d and M € GLd(KH) then M €
GLa(Amn).

Proof. Since M~! satisfies the same hypotheses as M (upon swapping d; and dy), it suffices
to carry out the descent for M as a matrix (as then doing the same for M~! when it exists
will show that invertibility descends too). Define C' = M — Ry (M), a dy X d; matrix with
coefficients in Xp,,. Our task is exactly to prove that C' = 0, so we assume not and seek a
contradiction. N

The operator Ry, is Ag,-linear and commutes with v € 'y, so v(C) = U;CU,. Hence,

(”)/ — 1)(0) = UlCU2 —C = (Ul — 1)CU2 + Ulc(Ug — 1) — (Ul — 1)C(U2 — 1),

This implies vp((7 — 1)(C)) = va(C) + min{va(U; — 1),vA(Uy — 1)} > vp(C) + c3, where
the final strict inequality uses that va(C') is finite (as we assumed C' # 0). This exactly
contradicts (TS3) (applied to a nonzero entry of C' with minimal vy-value), so C' = 0 as
desired. n

In addition to considering approximate descent using approximations relative to vy, as in
Lemma 14.2.3, we also need to keep track of p-adic approximations when doing descent. A
preliminary lemma in that direction (to then immediately be improved by bootstrapping in
the subsequent proposition) is:

Lemma 14.2.4. Let G be an open normal subgroup of Go, and pick n 211((}). Define
H=GNH,y. Let U=1+p™(Uy + Us) for Uy € Maty(Ag,) and Uy € Maty(A®) such that

vA(Ur) =z —ua(p™),
vA(Uz) =y —va(p™),

where x € [c3 + c3 + 6, +00] and y € [max(x + ¢z, 2¢o + 2¢c3 4 0), +00] for some § € (0, +00].
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For any v € Uy satisfying n(y) < n, there exrists B € 1+ p™ Maty (KH) such that
va(B—1) > y—ca —c3 and B'Uv(B) = 1+ p™(Vi + Va), with Vi € Maty(Ag,) and
Vs € Maty (A") satisfying

oA(V1) 2 & —ua(p™)
vpa(Va) =y —oa(p™) +6

In this and subsequent lemmas the reason that we include the (generally trivial) case
where various estimation parameters (x,y, d) are infinite is that it later allows us to not need
to make separate remarks when working with a 1-cocycle g — U, at a value U, that might
equal 1 (ie., U, —1=0).

Proof. If p=0in A then the assertion is obvious, so we may and do assume p # 0 in A. The
given estimates on the vy (U;)’s force vy (U) = 0. By (TS2)(4), we have

oA(Ran(U2) 2y —oa(p™) — c2 2 2 —oalp™).
By (TS3), there exists V' € Maty (KH) such that (y — 1)(V) = (R, — 1)(Us) and
VA(V) 2 vaA(Run(Uz) — Uz) — c3 2 min(va(Run(U2)), va(Us)) — c3,

with vp(Uz) = y — oa(p™) > y — va(p™) — co. Hence, vA(V) = y —oA(p™) — 2 — ¢5.
Define

Vi = Uy + Ry o(Us) € Maty(Ay,) and B =1+ p™V e Maty(A").
We then have vp(B — 1) = vaA(p"V) = y — ca — ¢3 > 0 (so B is invertible and vy (B) = 0)
and the matrix V; € Maty(Ap,,) satisfies
va(V1) Z min{us (Uh), va(Rua(U2))} 2 2 — va(p™).
Since B~" = 1 — p™V 4 p*"V? — .-, one can write B~' = 1 — p™V + p*"V?C with
C € Maty(A") satisfying vy (C) = 0. We then compute:
BTUy(B) =1=p™i = (1=p"V +p*"V2O)U(L +p"y(V)) — (1 +p™Vi)
= U+p"Uy(V) = p"VU = p*"(VUy(V) = V2CU~(B))
~1 = p"Uy = p" Ry n(U2)
= p"(Uz = Run(U2) + Uy(V) = VU
—p"(VUA(V) = V2CUY(B))),
where the final equality uses that U = 1 4 p™(U; + Us). Since Uy — Ry (Uz) = (1 —7)(V),
we have B™'U~(B) =1+ p™V; + p™V, with
Va = (U = 1y(V) = V(U = 1) = p"(VUAV) = VECU~(B)) € Maty(A").
But vp(U — 1) = va(p™) + min{va (Uy), va(Uz)} by the definition of U, and this is at least

x since y > x. We obtained two lower bounds from this:

AU =1)y(V)) Zy—woa(p™) —ca—cs+ax =y —uvalp™) +9
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and vA(V (U —=1)) = y—wva(p™)+6. Moreover, vy (VU~(V)—=V2CU~(B)) = 2v,(V) because
the “valuations” vj(v(B)) = va(B), va(C), and va(U) all vanish. Thus,

oA(P"(VU(V) = V2CU~(B))) = wa(®@™) +2(y — va(p™) — c2 — ¢3)
= y—vA(pm)—i—y—QCQ — 2c¢3
> y—u(p™) +4.

This implies vy (V) = y — va(p™) + 6, so we are done. [
Bootstrapping the lemma will now yield an improvement not involving any Uy, Us, or x:

Proposition 14.2.5. Let G be an open normal subgroup of Go, and define H = G N Hy and
pickn = n(G). Choose U € 1+ p™Matq(AH) for some m > 0 such that vy (U — 1) > y with
Y € [2¢0 4 2¢3 + 9, +00] some § € (0,+00]. For any v € Ty satisfying n(y) < n, there exists
B € 1+4p™ Maty (A7) such that vy (B—1) = y—cy—c3 and B-'U~y(B) € 1+p™ Matg(As,).

Note that since vA(B — 1) = y — ¢» — ¢3 > 0, we must have B € GLy(A"). Hence, the
appearance of B~! in the conclusion makes sense.

Proof. The case p = 0 in A s trivial, so we may and do assume p # 0 in A. Define
T =Y —Cy = Cy+c3+ 6, and also define Uy =0 € Maty(Ay,) and Uy =U € Matd(KH).
By repeatedly applying Lemma 14.2.4, we obtain a sequence {B,,} on B,, € 1+p™ Matd(KH )
such that

(i) vaA(Bn —1) =y —ca — c5 +nd > 0 (so B, € GLy(AH));

(ii) (BoB1-+ B,) 'Uy(ByBy -+ B,) = 1+ p™(Uyn + Ua,) with Uy, € Maty(Ag,) and

U € Matd(KH) satsifying va(Uy,) = © — op(p™) and va(Uay) = y — va(p™) + no
for all n > 0.
Since A¥ is complete for the topology defined by vy, property (i) implies that the product

B = [[,_, B, converges in GLg(A™). We have B € 1+ p™Maty(A") and vy(B — 1) >
y — ¢y — 3 > 0. In particular, B € GLy(AH). Property (i) then implies that B~'U~(B) €

1+ p™Maty(Ap,) because Ag, is closed in A for the topology defined by vy. [ |

We can now establish another result about the cohomological triviality of certain 1-
cocycles, this time incorporating a p-adic estimate on the trivializing 0-cochain as well.

Proposition 14.2.6. Let U: Gy — GL4(A) be a continous cocycle, and assume that for some
open normal subgroup G of Gy we have v(Uy —1) > ¢14+2c+2c3 and Uy € 1 +p™ Mat,(A)
for all g € G, with some m € Zx.

There exists B € 1+ p™ Maty(A) such that va(B — 1) > ¢y + ¢35 (so B € GLg(A®)) and

the 1-cocycle h — B~*Uyh(B) is trivial on H := G N Hy and has values in GLa(Apn(q))-

Proof. Since vy (U, — 1) > 0, we have vp(U,) = 0. By Proposition 14.2.2, there exists
By € 1+p™Maty(A) such that vy (B;—1) > 2¢,42¢3 > 0 (so vA(By) = 0 and By € GLy(A"))
and the 1-cocycle U' : g — U; = By 'U,g(B) is trivial on H. Tt is also clear that va(U,) =0
for all g € Gy, since va(By — 1) > 0 and vy (U,) = 0. By triviality of restriction to H, the
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1-cocycle U’ is the inflation of a 1-cocycle fH = Go/H — GLy (KH) that we still denote by
U'.
Choose v € G/H C I'y such that n(y) = n(G). We have U/ € 1+ p™ Maty(A") and

ua(U = 1) = oa (B YU, = D)y(B1) + By 'y(Br — 1) + By — 1)

> inf {vp (U, — 1), va(B1 — 1)}
> 202 -+ 203.

Hence, we may apply Proposition 14.2.5 with n = n(y) = n(G), U = U, y = vA(U] — 1)
(which is infinite if U} = 1!) and § = y — 2¢; — 2¢s5 > 0 to find By € 1+ p™ Maty(A")
such that vy(Bs — 1) > 3 + ¢35 > 0 (80 vp(Bs) = 0 and B, € GLy(Af)) and B2_1U1{’7(Bg) €
GLi(Atn(c))- N
Define B := B1By € 1 + p™ Maty(A), so we have:
o vA(B—1) > min{us(B1 — 1),va(Ba — 1)} > 2 + ¢3,
e the 1-cocycle g — U} = B~'U,g(B) is trivial on H (so it is the inflation of a 1-cocycle
FH — GLQ(AH)), U,/y/ - GLd(AH,n(G))> and
[}
WU =1) = ua((By' — DU (B2) + (U] = Dy(Ba) +7(Ba — 1))
> min{vy(By — 1), 0 (U], — 1)}
> cg+c3>c3>0.
(In particular, UJ € GLg(AH))
For any g € I'yy we have gy = vg (because G/H lies in the center of fH), so U/g(UY) =
Uly(UY); that is, v(U)) = UJ~'U)g(UY). Lemma 14.2.3 applied with n = n(y) = n(G),
M =U], U = Uf/’_l, and Uy = g(UJ) implies that U] € GLy(Anng)) (note that Us €
GL4(Am () thanks to (T'S2)(3)). Since g was arbitrary in I'y, we are done. [

Finally we can give some interesting cohomological applications of the preceding technical
results. In what follows, we consider continuous cohomology using the topology on A and
its subrings defined by wv,.

Let G be an open normal subgroup of Gy, and as usual define H = HyNG. For n > n(G),
the inclusion Ay, C AH induces a map

H' (T, GLy(Agn)) — H' Ty, GLg(AT)).
Composing with inflation H! (fH, GLd(KH)) — H'(G,, GLd(K)) thereby defines a map

i+ im H' (T, GLa(Ag)) — H' (Go, GLa(A)).

n

Lemma 14.2.7. The map iy is injective.
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Proof. The inflation map H* (fH, GLd(KH)) — H'(Go, GLd(K)) is injective, so our problem
is to prove the injectivity of lim H' (g, GLy(Apn)) — HY (T, GLg(A™)). Let

UU Ty = GL4(Apo0)

be a pair of continuous 1-cocycles which become cohomologous in GLy(AH). That is, we
assume there exists B € GLg(A") such that U, = B"'U,g(B).

Choose ng > n(G) such that U and U’ are both valued in GL4(Ag ). If v € G/ H satisfies
n(7y) = ng then v(B) = U;'BU!,. By continuity, we make choose  with n(7) large and finite
such that vA (U, —1),vA(U] — 1) > ¢3. Hence, Lemma 14.2.3 may be applied with n > n(y),
M =B, U, = U;l, and Uy = U, to deduce that B € GL4(Apn). Hence, U and U’ are
cohomologous as desired. |

To reduce clutter, we now define the notation

H' (T i, GLa(Afoo)) i= lim H' (T i, GLa(Ag0)).

(This creates no risk of confusion, as we will never actually use the usual meaning of the H!
on the left side, aside from Sen’s situation where we have already proved in Exercise 14.4.4
that the limit pointed set can be passed inside of the cohomology.) Observe that elements

of this set are represented by continuous 1-cocycles r g — GLg(Ag o) which happen to land
in some GLg(Ag,,).

We wish to pass to the limit on the maps iy as G shrinks. (Recall H = G N Hy.) To this
end, consider an inclusion G C G’ of open normal subgroups of G, and define H = Hy N G
and H' = HyNG'. There is a natural surjection I'y — ['yr, and if n > n’ > max(n(G), n(G"))
then Ay, C Ap,. In particular, we have an inflation map

iH,H’ : I‘I1 (fH/, GLd(AH’,oo>) — I‘I1 (fH, GLd(AH,oo>)

The sets Hl(fH, GLd(AH,OO)) with H = G N Hy and G varying through open normal sub-
groups of G thus form an inductive system. Clearly iy = iy oipy g for any such pair (G, G’)
as above, so we get a map

lim H' (T's7, GLa(A1,00)) — H' (Go, GLa(A))
G

in which the limit is taken over all open normal subgroups G in G,.
Theorem 14.2.8. This map is a bijection.

Proof. Injectivity results from Lemma 14.2.7 and surjectivity from Proposition 14.2.6 (using
m = 0). [

In terms of K-representations, Theorem 14.2.8 has the following consequence for existence
and uniqueness of descent, with a strong form of uniqueness.

Theorem 14.2.9. Let W be a free A-module of rank d equipped with a continuous semilinear
action of Gy. Let G C Gy be an open normal subgroup, and choose ¢ € R¢ 12¢y+205- Assume
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that W wviewed as a G-representation admits a basis with respect to which the resulting 1-
cocycle g — U, describing the action of G on W satisfies vaA(U, — 1) > ¢ for all g € G.

Then there exists a unique finite free Ap nq)-submodule W' of W with rank d such that
for H := G N Hy we have

(1) W' is stable under the action of Gy and this action factors through Ty ;

(2) there exists some ¢ > c3 such that W' admits a basis in which the 1-cocycle U’
describing the action of Uy satisfies va(U!, — 1) > ¢ for all v € Ty,

(3) W=A On gy W' as A[Go]-modules.

Note that the uniqueness for W' is as an actual subset of W, not merely up to abstract
A g n(e-linear I'g-equivariant isomorphism.

Proof. The existence of W’ follows from Proposition 14.2.6. For the uniqueness, assume
W' is a finite free Ap ,g)-submodule of W with rank d having the same properties as W'
Choose Apn(q)-bases € and €” of W' and W” respectively. By property (3), these are also

A-bases of W, so we can define B € GLg4(A) to be the matrix that converts e’ -coordinates
into €’-coordinates. The aim is to prove that actually B € GLq(Ap . (q)), as this says exactly
that the respective Ap ,c)-spans W’ and W” of €' and e” inside of W coincide.

The action of I';y on W is described by cocycles U’ and U” relative to the bases €’ and
e, and U] = B~'U}g(B) for all g € Go. By property (1), U; = U] = 1if g € H, so
B € GLy(Af). Moreover, we have v(U;—1) > cz and v(Uy —1) > ¢3 for g € ' by property
(2). Finally, since g(B) = U, "' BU we have B € GL4(An()) by Lemma 14.2.3, so we are
done. -

14.3. Descent of cohomology from Gx to I'. Tate [49, §3.2] proved Cg-valued coho-
mological vanishing theorems for G (e.g., HY(Gk.,Ck) = 0), and from this was able
to get isomorphisms between Gx-cohomology and Gal(K /K )-cohomology. This is quite
remarkable, since Gal(K/K) is essentially Z,. In this section we rederive Tate’s results,
working within the broader context of the Tate—Sen formalism (following [1, App. I]).

First we describe the basic setup. Using notation as in §14.1 (the profinite group Gy, the
ring K, the “valuation” wy, etc.), let W be a finite free A-module of rank d. The choice of
a basis identifies W with A%, Endowing the latter with the product topology (where the
topology on each factor is defined by v,) equips W with a topology, which is independent of
the basis. For m > 0 define

Asp = {2 € N up(z) = m}

and W, = Asy, - W, s0 {Wx, }im>o0 is a base of open neighborhoods of 0 in .

Tate’s case of interest was Sen’s situation: G = G and A=C & with its usual valuation.
In what follows, as with Tate, we consider continuous cohomology of with values in W.
To be precise, if G C Gy is a closed subgroup and n > 1, we denote by €™ (G, W) the
group of continuous r-cochains of G with values in W (i.e.,, continuous maps of topological
spaces G — W) and 9: €"(G, W) — €" (G, W) is the usual the boundary map (which
respects continuity, due to its explicit formula). We will be approximating cochains by other
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cochains, so we need a measure of uniform closeness. The natural definition is to assign to
each f € €"(G,W) the supremum

oa(f) = inf {oa(f(91,---,9:) g1, 9, € G} € Z U {+00}.

This depends on the choice of A-basis of W, but that will not matter for our purposes.

The results below are due to Tate (¢f [49, §3.2]) in the case of Sen’s situation, and we follow
the presentation of [1, Appendix I]. The key to everything is the following lemma, which
handles the fact that continuous cohomology does not have good d-functorial properties (due
to the continuity conditions on cochains). Since Tate was aiming to relate Gy cohomology
and Gal(K /K )-cohomology, he wanted a version of the Hochschild-Serre spectral sequence.
He also wanted to uniformly approximate continuous cochains by ones arising from finite
groups (as in profinite group cohomology for discrete modules). Both of these aims are
achieved in this lemma:

Lemma 14.3.1. Assume (TS1) holds. Let H be an open subgroup of Hy and f € €"(H,W).

(1) If there exists an open subgroup H' C H such that f factors through H/H' then there
exists h € €""Y(H/H',W) such that vy(f —0h) = va(Of)—c1 and va(h) = va(f)—cy.

(2) There exists a sequence of open normal subgroups (H,,)m=o and fp, € €"(H/H,,, W)
such that vA(f — fm) = m for allm > 1.

The second part of this lemma does not rest on (TS1) at all. Its proof is an elementary
calculation.

Proof. First we prove (1), for which we may and do assume n > 1 By (TS1) we can choose
a € A" such that vy(a) > —¢; and ZTeH/H, 7(a) = 1. Define h € €"~'(H/H',W) by:

hgi, .- gn-1) " Y g g (@) (g1, Gnr )

TeH/H'
Since vp () > —cq, we have

(g1 GnaaT (@) f (91, - s gno1, 7)) = val) +oa(f(g1, -1 Gno1, 7)),

so vp(h) = va(f) —c1. (We include the case of equality to allow f = 0.) On the other hand,
we have

n—1

ah(glu cee 79“) = gl(h’(g27 cee 79”)) + (_1>Jh(glu <3 9595415 - - - 7gn) +(_1)nh(glv cee 7gn—1)
1

(. J/

<.
Il

We need to put the expression labeled as ¥ into a more convenient form.
As gl(h(g2> s agn)) = (_1)n ZTEH/H’ g1+ 'gnT(a)gl(f(g% <o 9n, 7_)) and

h(g1, -5 9iGi+1s > Gn) = Z g1~ ) f(g1s- - 99515+ Gns T),
TeEH/H'
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we get that Y is equal to

n—1

Z [ (91(f(92a--->9m + .gl?"'agjgj-i-la"'agnaT))7

TeEH/H' =1

<.

which expands out to become

Z gi- gnT (af(glv"'ngL?T) - (_1)nf(glv’”7gn—lvgn7—) - (_1)n+1f(gluvgn)>

TeH/H'

But we also have (by change of variables)

Z g1~ ) f(g1,- - Gn—1, guT) Z g1 gna7(@) f (g1, -+ gn—1,T)

TeH/H' reH/H'

and ZTeH/H, g1 ga7(a) = Lsince 3° pp 7(a) = 1, so we obtain the formula

Z g1 af(gla s >gn77)> - h’(gb s agn—l) + (_1)n.f(gla s agn)

TeH/H'

Thus, we compute

8h(917"'7gn)_f(glu"'vgn = Z gi- gnT 8f(glv’”7gn77—)7

TeH/H'

s0 vA(Oh — f) = va(Of) — 1 (equality allowing for the possibility df = 0). This proves (1).

Turning to the proof (2), since f is continuous we see that for each m > 1 there exists an
open subgroup H,, C H such that f, : H® — W — W/Wx,, factors through a (discrete!)
cochain f),, on the finite set (H/H,,)". If s,,: W/W-,,, — W is any (set-theoretic) splitting
of the projection, the cochain f,, = s,, o f,, is continuous and va(f — fn) = m. |

Let G C Gy be an open subgroup and H = G N Hy = ker(¢|g) as in Tate-Sen formalism.

Proposition 14.3.2. Assume (TS1) holds. Then H*(H,W) = 0 for all n > 1, and the
inflation map H"(G/H, W) — H"(G,W) is an isomorphism for all n > 0.

Proof. Choose n > 1 and f € €"(H,W). Pick sequence (H,,)m>1 and { f,, };n>1 as in Lemma
14.3.1(2). For each m > 1 let h,, € €""'(H/H,,, W) as in Lemma 14.3.1 (1) be such that
UA(fin — Ohpn) = vA(Ofm) — c1 and vy (hy,) = va(fim) — 1. Since the sequence (hy,)men., 18
Cauchy, it converges to some h € €™ *(H, W) (by the completeness of W).

Now assume f is a cocycle; i.e., f = 0. Since vp(f — fin) = m, we have vy (9f,,) = m,
50 UA(fm — Ohum) = va(Ofm) — c1 = m — ¢1. Passing to the limit as m goes to infinity gives
f = Oh, which proves H"(H, W) = 0.

The isomorphism claim for the inflation map is clear for n = 0, so to prove this claim in
general we may assume n > 1. The case n = 1 is proved by the classmal method of proof with
1-cocycles. Thus, we now assume n > 2. There is no Hochschild-Serre spectral sequence,
due to the continuity conditions, but we can adapt the idea by working “by hand” as follows.
To handle surjectivity for the H"’s, by thinking in terms of continuous cocycles we just need
the restriction map €™ (G, W) — €™ 1(H,W) to be surjective. Such surjectivity follows
from Lemma 14.3.1(2).
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For injectivity of the inflation mapping in degree n > 2, consider f € €"(G/H, W) such
that 0f = 0 and the composite mapping
G" — (G/H)" L wH —w
has the form OF for some F' € € (G"', W) (which says that the class of f in H"(G/H, W)
inflates to 0 on H"(G, W). We then have that F'|gn-1 has n-cocycle boundary df|g» = 0, so
Flgn— € Z" Y H,W). But n — 1 > 1, so the proved vanishing of higher H-cohomology of
W gives that F|y«—1 = OF' for some F' € €"2(H,W). By Lemma 14.3.1(2) this i/ lifts to

some [ € €"2(G,W), so if we replace (as we may) F with F'— 0f’ then we have arranged

Proposition 14.3.3. If W € Repg, (Gk), then H*(H,W) = 0 for all n > 1 and the
inflation map H"(G/H, W) — H"(G,W) is an isomorphism for all n > 0.

Proof. We apply Proposition 14.3.2 to the field A= Ck, the group H = Gg__, and vy = v.
Condition (TS1) is fulfilled by Proposition 14.1.3. [

Now we can finally give a proof of Theorem 2.2.7. Let us also recall the statement.

Theorem 14.3.4. Let K be a p-adic field and n : Gx — O} a continuous character such
that n(Gg) is a p-adic Lie group of dimension at most 1. Let Ck(n) denote Cr with the
twisted G g -action g.c =n(g)g(c).

If n(Ix) is infinite then H' . (Gk,Ck(n)) = 0 for i = 0,1 and these cohomologies are 1-

dimensional over K when n(I) is finite (i.e., when the splitting field of n over K is finitely
ramified).

Proof. First assume that n([) is infinite. In this case the Tate-Sen formalism applies, so
Proposition 14.3.3 gives

H' (G, Ck () = HY(Gal(Koo/ K), Cre(n) ") = HY(Gal(Kao/ K), Ko ().

Thus, we wish to prove H'(Gal(Ks/K), Koo(n)) = 0 for i = 0,1. For any finite Galois
extension K’/K inside of K, the usual proof of inflation-restriction in degree 1 works with
continuous 1-cocycles to give a left exact sequence
0 — H'(Gal(K'/K), K'(n)) — H'(Gal(Kw/K), Koo(n)) = H'(Gal( Koo /K"), Koo (1)).

Finite group cohomology on a Q-vector space vanishes, so to prove the desired vanishing in
degree 1 it is harmless to replace K with any such K’. Likewise, if K. (n) has vanishing
space of invariants for Gal(K/K’) then it certainly has vanishing space of invariants for
Gal(K~/K). Hence, for our treatment of the infinitely ramified case it is harmless to replace
K with such a K'. We may therefore assume that Gal(K./K) ~ Z, with topological
generator 7. The infinitely ramified hypothesis implies that the unit A = () € & is not a
root of unity, and by replacing K with a finite extension inside of K., we can arrange that
v(A—1) > 0. That is, A € 1 + m.

We identify [A(Oo(n) with the K-Banach space Ko on which each g € Gal(K«/K) acts
via g.c = 1(g) - g(c) (using the natural action of Gal(K./K) on K. via isometries). Since

8need to finish writing the argument
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A7l is a 1-unit that is not a root of unity, by Lemma 14.1.9 the operator x — y(z) — A1z
on K., is bijective. Multiplying on the left by A, this says that © — ~.x — z is a bijective
self-map of K. The denseness of v% in Gal(K,,/K) implies that H°(Gal(K../K), Ks(n))
is exactly the space of ¢ € I?Oo such that v.c = ¢, which is to say that this is the kernel of
the injective map z +— 7.2 — x on Ko. This proves the desired vanishing result in degree 0.

For degree 1, first note that if ¢ : Gal(K/K) — Ko (n) is a 1-cocycle then (y—1).c(7") =
(7™ —1).c(v) by forwards and backwards induction on n € Z (using that ¢(1) = 0). Hence, if
¢ is also continuous then (v —1).c(g) = (g — 1).c(y) for all g € Gal(K,/K). By surjectivity
of z — ~v.x — x we can write c¢(vy) = v.xg — xo for some zy € IA(OO, and so if we subtract
the continuous 1-cocycle g — g.zo — x¢ from ¢ (as we may do without changing its degree-1
cohomology class) then we are reduced to the case when ¢(v) = 0. But in such cases, for
all g € Gal(Ka/K) we have (y — 1).c(g) = 0. By injectivity of z — 7.z — 2 on Ku, we
conclude that c is identically zero as a function. This completes the infinitely ramified case.

Now suppose that n([f) is finite. In this case the Tate—Sen formalism does not apply,
so instead we will use completed unramified descent as in Lemma 3.2.6. First assume that
n(Ik) is trivial, which is to say that 7 is unramified. We may and do view 7 as a continuous

character Gj, — 0. In this case Cg(n)'% = (Cg)/%(n) = [/(R(n) Thus,

Cr (M = (O (m)*[1/p].

By Lemma 3.2.6, the space of Gj-invariants on the finite free rank-1 @ =.-module 0= (1) is
free of rank 1 over O, so inverting p gives that C (1) is 1-dimensional over K. To handle
degree-0 in general, let K'/K be a finite Galois extension in the splitting field of 7 such that
the open normal subgroup Ik in I is contained in ker(n|7, ). That is, n|q,, is unramified. It
follows that Cy(n)¢x is a 1-dimensional K’-vector space, and its natural Gal(K’/K)-action
is visibly K’-semilinear. Thus, by ordinary Galois descent, C (n)¢% = ((Cg(n)Cx")GalE/K)
is 1-dimensional over K.

Moving on to degree 1, we first handle the case n = 1, and then we shall deduce the
general case. That is, we first prove H' (G, Cx) = 0. For a finite Galois extension K'/K

contained in K, we have the left exact sequence
0— Hl(Gal(K'/K),K’) — Hl(GK, CK) - Hl(GK/, CK),

so since H'(Gal(K'/K), K') = 0 it suffices to treat the case of K’ in place of K. Let K. /K
be the infinitely ramified p-adic cyclotomic extension. By axiom (TS3), we may replace K
with some K, so that Gal(K/K) ~ Z, with topological generator v such that v — 1 acts

bijectively on the kernel X C K, of the normalized trace to K. By Proposition 14.3.3
applied to K., /K, we have

H' Gy, Cx) ~ HY(Gal(K o /K), Ko) ~ HY(Gal(Koo /K), K) & H(Gal(K/K), X),

so H'(Gg, Ck) ~ Homeon(Z,, K) is 1-dimensional over K.
Now turning to the general case, let K’/K be a finite subextension of the splitting field of
n which absorbs the ramification of n, and let L = K'™. If we ignore continuity conditions on

cocycles, the Hochschild-Serre spectral sequence provides isomorphisms Hj, (Gk, Cx(n)) =~

H2 (Grr, Ci (1)) E/5) via restriction for all n > 1 since the Gal(K'/K)-cohomology
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of a Q-vector space vanishes. Since Gk is open in Gk, it follows that for n = 1 this
restriction isomorphism induces an isomorphism H' (G, Cx(n)) ~ H' (G g/, Cx(n))S2E'/5)
in continuous cohomology as well. Hence, provided that H!(G g/, Cx(n)) is a 1-dimensional
K'-vector space, the invariants under a K’-semilinear action by Gal(K’/K) constitute a 1-
dimensional K-vector space via usual Galois descent. It is therefore enough to solve the
problem for K’ in place of K, so we_may assume thaﬂ\n is unramified. By completed
unramified descent in Lemma 3.2.6, K"(n) ~ K" as K" -vector spaces equipped with a
semilinear action by Gy = G /Ix. Thus, Ck(n) ~ Ck in Repg, (Gk). We have already
proved that H'(Gg, Ck) is 1-dimensional over K, so we are done. [ |

14.4. Exercises.

Exercise 14.4.1. Let R be a topological ring, GG a topological group equipped with a continu-
ous action on R (i.e., G X R — R is continuous). Endow any finite free R-module M with its
natural topological module structure using a basis of R (this topology is independent of the
basis; why?). Assume M is endowed with a semilinear action by G; we say it is continuous
if the action map G x M — M is continuous. We wish to classify such M (especially with
continuous action) in terms of a suitable cohomology set.

(1) Let d be the rank of M and choose an R-basis e of M. Make no continuity assumption
on the action of G. Define the associated function U, : G — GL4(R) by setting
Ue(g) = (145(g)) where g(e;) = > ri;(g)e;. Prove that U, is a 1-cocycle and that as
we vary through all choices of e the U, sweep out exactly a single cohomology class
of 1-cocycles. Prove that U, : G — Maty(R) is continuous precisely when the action
of G on M is continuous, and that in such cases g — Us(g)™! is also continuous as a
map G — Maty(R). (Beware that GL4(R) may not be a group under the subspace
topology from Maty(R); consider d = 1 and R an adele ring of a global field!)

(2) There is a natural way to topologize GL4(R) so that it is a topological group (recov-
ering the subspace topology when R* has continuous inversion with respect to the
subspace topology from R). The “bare hands” approach, which is rather artificial-
looking, is to observe that although GL4 is not Zariski-closed in Mat, (viewed as
affine R-schemes of finite type), GL, is Zariski-closed in Mat, x Mat, via the anti-
diagonal mapping g — (g,¢g~1). So topologize GL4(R) using the subspace topology
from Maty(R)? via the anti-diagonal map, and show it makes GL4(R) a topological
group. (In case you think that this construction is too ad hoc, see [16, §2] for a more
functorial approach.)

Prove that the G-action on M is continuous if and only if g — Ue(g) is continuous as
amap G — GLg4(R). (Consequence for peace of mind: provided we have a 1-cocycle
algebraically, it is completely safe to use the topology of Maty(R) to track continuity
for U,!) Conclude that the pointed set H!(G,GL4(R)) of continuous cohomology is
in a natural bijection, functorially in G and R! with the set of isomorphism classes
of continuous semilinear representations of G' on finite free R-modules of rank d. To
what isomorphism class does the trivial cohomology class correspond?
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(3) If H is a normal subgroup of G (with the subspace topology), construct and interpret
a left-exact sequence of pointed sets

1 — HY(G/H, GLy(R™)) — HY(G, GLa(R)) — HY(H, GL4(R)).

(4) Take G = Gal(F'/F) for a Galois extension of fields and R = I’ with the discrete
topology and the usual G-action (which is continuous!). Using Galois descent for
vector spaces (as in (2.4.3)), infer that H'(Gal(F’/F),GL4(F’)) = {1}. Can you
adapt the above arguments to work with GL; replaced by Sp,,;? Or SL;? Or GSpy,;?
(Don’t forget that R* may not be a group for the subspace topology of R.)

Exercise 14.4.2. In the ring-theoretic input to the Tate-Sen formalism, prove that if p # 0
in A then A is Z,-flat and the multiplication map p : A — A is a topological embedding.
Using completeness show it is even a closed embedding.

This ensures that being a multiple of a specified power of p is a closed condition on A (a

triviality when p = 0 in K) It is a property that is used all the time without comment when
working with various kinds of p-adic rings and dividing by p in the formation of limits.

Erercise 14.4.3. Verify the following properties of vy on Matg(A) (from Definition 14.1.1)
for any d > 1.

(1) Prove that vy on Maty(A) satisfies analogues of the axioms (1)—(4) for vy on A (the
case d = 1), as well as the completeness axiom and the continuity and “isometry”
axioms for the Gy-action through matrix entries. (Beware that we do not claim that
GLd(K) with its subspace topology is a topological group, as in the case d = 1 this
might fail. Compare with the case of adele rings of global fields.)

(2) Consider M € GL4(A) for which vy (1—M) > 0. Prove that vy (M) = 0, M € GL4(A),
and vA(1 — M) = va(1 — M). (Hint: consider the infinite series -, oo(1 — M)™.)

Exercise 14.4.4. Let F be a field complete with respect to a nontrivial discrete valuation,
and let F'/F be a Galois extension (with possibly infinite degree). Let {F!} be a directed
system of subfields of F” Galois over F' with F' = UF].

(1) Prove that the limit lim H'(Gal(F'/F), GLq4(F)) (using continuous cochains, as al-
ways) is identified with the set of isomorphism classes of continuous semilinear d-
dimensional representation spaces W’ of Gal(F’/F') over F’ with the property that
the Gal(F'/F)-action on W is defined over some F} (i.e., W' = F' @p W] for some
d-dimensional continuous semilinear representation space W} over F} for Gal(F"/F)).

(2) Deduce that the map lim H'(Gal(F’/F), GLy(F})) — H'(Gal(F'/F), GL4(F")) is in-
jective.

(3) Assume that there are only countably many F}. Use the Baire category theorem (!)
to prove that for any profinite group G, a continuous 1-cocycle G — GL4(F’) has
image contained in some GLg4(F). (Hint: by continuity the image of a continuous
1-cocycle is compact.) Deduce that the map in (2) is also surjective.

(4) As an example of the preceding part, prove that a continuous homomorphism I' —
GL, (Q ) from a profinite group I' lands in GL,,(K) for some finite extension K/Q,.
Using F Z, and s — z° for suitable x € 1 + pOc,, show that this conclusion fails
if we replace Qp with C,.
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(5) Let L C F’ be a subfield containing F' such that F’/L is finite (necessarily Galois)
and L/F is Galois. Using the vanishing of the pointed set H'(Gal(F'/L), GL4(F"))
(Galois descent!), deduce that the inflation map

HY(Gal(L/F),GLy4(L)) — HY(Gal(F'/F), GLg(F"))

is bijective. In other words, we can replace F’ by any such L that we please (but we
cannot go all the way down to NL = F; this H! is generally very nontrivial, as we
shall see in Sen’s situation).

15. p-ADIC REPRESENTATIONS AND FORMAL LINEAR DIFFERENTIAL EQUATIONS

The “classical” Sen theory is the following setup. Let ¢ : Gx — Z; be an infinitely rami-
fied character, K., /K its splitting field, I' = Gal(K./K), and H = Gf_ . Finally, as usual,
let K,, = ker(1) mod p"). We have checked in §14.1 that this situation satisfies the Tate-Sen
axioms, and now we shall deduce two kinds of consequences: a descent and decompletion
result that sets up an equivalence between Repg, (G ) and Repy_ (I'x), and the theory of
the Sen operator (which generalizes the Hodge-Tate decomposition to arbitrary continuous
finite-dimensional Cg-semilinear representations of G, and provides a link between p-adic
representations and p-adic differential equations).

15.1. Classical Sen theory. The first step toward a functorial theory of descent and de-
completion for Cg-semilinear representations of Gk is to work at the level of isomorphism
classes of objects:

Theorem 15.1.1. The natural inflation map H'(I', GLy(K)) — H'(Gk,GL4(Ck)) is
bijective for all d > 1.

Proof. By Theorem 14.2.8, the natural map
lim lim ( Gal(Loo/K), GL4(Ly)) — H' (G, GL4(Ck))
L n
is bijective (with L running over the finite Galois extensions of K inside of K). Exercise
14.4.4 identifies the left side with H'(T', GL4(K)) compatibly with inflation maps. |

A more precise version of Theorem 15.1.1 is:

Theorem 15.1.2. Let W be a continuous semilinear C g -representation of G of dimension
d > 1. There ezists a unique G -stable d-dimensional K -subspace Dge, (W) in W on which
H acts trivially and for which Cx ®k_, Dgen(W) = W (i.e., a Ky-basis of Dgen(W) is a
Cx-basis of W).

Moreover, WH = [A(oo Rk, Dsen(W) and Dgen(W) descends to a continuous semilinear
representation of I' over some K,. In particular, Dgen(W) € Repg_ (I).

Observe that Dge, (W) depends on the subfield K, /K inside of K, but not on the specific
infinitely ramified character ¢ : G — Z for which it is the splitting field.

Proof. By Theorem 15.1.1 there exists a d-dimensional D € Repg_(I") for which there is an
isomorphism Cg ®g.,, D ~ W in Repg, (Gk) (where G acts on D through its quotient
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['). In particular, since H acts trivially on K., and on D, we may use a K-basis of D to
compute

WH=Cl oy D=FK,®k.D

(with C# = K. by Proposition 2.1.2).

Observe also that if D’ is a d-dimensional K .-subspace of W on which H acts trivially
and for which the natural map Cx ®k, D' — W is an isomorphism then a K-basis of D’
is a Cg-basis of W. Hence, in such cases the subspace topology on D’ from W is its natural
topology as a finite-dimensional K.-vector space (as K, gets its valuation topology as the
subspace topology from Cp). It therefore follows from the continuity of the Cg-semilinear
action of Gx on W that the K -semilinear action by I' = Gx/H on D’ is continuous for
the K -linear topology on D'. In other words, necessarily D’ € Repy_ (I').

It remains to show that if Dy, Dy € Repg_(I') satisfy Cx ®x., D; = W then D; = D,
inside of W. To descend the equality, we first note that it suffices to descend it to an
equality M ®k_ D1 = M ®_, D inside of W for some finite Galois extension M /K, inside
of Cg. Indeed, if we can prove such a descent then equivariance with respect to the action
of the finite quotient Gal(M/K.,) of Gk, = H implies that an equality of K,-subspaces
of Gal(M /K )-invariant elements. But such invariant points in L., Q. D; are exactly the
elements in D;. Since any such M/K, has the form L. /K., where L/K is finite Galois, we
may replace G with any open normal subgroup (perhaps depending on D; and Ds).

The 1-cocycles describing the G g-action on W relative to the Cg-bases arising from K-
bases of the D,’s are continuous, and so on a sufficiently small open normal subgroup of G g
these 1-cocycles can be made as uniformly close to 1 as we please. Hence, by replacing G
with a sufficiently small open normal subgroup we can arrange that both 1-cocycles (arising
from D; and D,) satisfying the hypothesis “v(U,; —1) > ¢ for all g € Gk” in Theorem 14.2.9
(applied in Sen’s situation). The strong form of the uniqueness in that result then says that
Dy = D, inside of W, as desired. [

Although we have not yet shown that Dge, is functorial, we can establish some elementary
properties as if it were a good functor. The third of these properties will useful in the proof
of functoriality.

Lemma 15.1.3. Choose Wi, W5 € Repg,. (Gk) and let D; = Dsen(W;) € Repg_(I') as a
Gk-stable K-subspace of W;. For any D € Repg_(I') let D¢, denote the corresponding
scalar extension Cx ®k., D in Repg, (Ck). We have the following equalities:

e Dgo(W), @ W) = Dy @ Dy inside of W1 @ Wa = (D1 @ Ds)cye,

e Dy (W) ®c, Wa) = Dy @k, Dy inside of W1 @, Wa = (D1 @5, D2, -

o Dgon(Home, (Wi, Ws)) = Homg, (D1, D) inside of the common Cg-vector space
Home, (Wi, Ws) = Homg (D1, D) ey,

Proof. In each case, if we let D denote the right side of the desired equality then there is
a natural Cg-linear Gg-equivariant identification of D¢, (using I'-action on D) with the
object W € Repg, (Gk) for which the left side is written as Dge,(1W). The uniqueness in
Theorem 15.1.2 therefore implies that under this identification D = Dge,(W). |
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__In the case of Hom-spaces, the identification in the lemma says exactly that the natural
K-linear I'-equivariant map
(15.1.1)

Ko ®k.. Homg_ (Dgen(W1), Dgen(W2)) — Homg, (W7, Wz)H = HOIHCK[H}(Wh Ws)

defined by a®T +— (c®w; — ac®T (w)) is an isomorphism. Now pass to the I'-invariants on
both sides. On the right side we get the K-vector space Home (¢, (W1, W2). On the left side
get the K-vector space of I'-invariants in [A(oo ®k., Homg_(Dy, Dy), where D; = Dgen(W;).
This space of I'-invariants certainly contains Homg_ (D1, Ds), but is it any bigger? If not,
then we will have established that Dsg,, is actually functorial, and even fully faithful as such.
More generally, we have:

Proposition 15.1.4. For any D € Repy_(I), (Koo @ D)' = D'. In particular, Dge, is
a fully faithful functor from Repg, (Gk) to Repy_ ().

Proof. Let e = {e1,...,eq} be a K-basis of D, and consider z € (K ®k.. D)F'. Thus,
x = > xe; with x; € Koo, so the column vector # of z;’s in Kd satisfies U, - v(7) = &
for all v € I'. By replacing K with Ky for a sufficiently large N we can arrange that

v(U;" = 1) > c3 for all y € I'. Thus, we can apply Lemma 14.2.3 With Uy =U;"and Uy =1

to get that # € K¢ for some n > 1. Hence, z; € K, for all i, so z € D as desn"ed [ |

The following theorem is an important generalization of Proposition 15.1.4, and it gives a
Galois-theoretic characterization of the “decompletion” D inside of K, ®k_ D.

Theorem 15.1.5. For any D € Repg_(I'), D is the Ky -subspace of points x € D whose
[-orbit has K-span with finite K-dimension.

Proof. We first check that all I'-orbits in D have K-span with finite K-dimension. We
may assume D # 0 and consider the I'-orbit of a nonzero x € D. We choose a K. -basis
{z = e1,...,eq}. The T-action on D is described relative to this basis by a continuous
1-cocycle U : I' =/ GL4(K ). By Exercise 14.4.1, this lands in GL4(K,) for some n. Hence,
the K,-span of the e;’s is I'-stable, and so thls is a finite-dimensional K-subspace of D
containing the I'-orbit of x = e;. R

It remains to show that any point in D whose ['-orbit has finite-dimensional K-span must
lie in D. To prove this it is harmless to replace K with any K, and I" with the corresponding
open subgroup In partlcular we can arrange that I' ~ Z,. Pick a K,-basis e = {e;} of D,
so it is also a K -basis of D. As we have seen above, the I'-action on the ¢;’s is described
by matrices in GL4(K,,) for some n, and so by replacing K with such a K,, we may assume
that the 1-cocycle is valued in GLd( ).

For any x € lA? consider the unique expansion x = ) ¢;e; with ¢; € I?oo. For any v € T’
we have v(e;) = Zuﬂ( Je; with (u;;(7)) € GL4(K), so

= v(ee) = ZZUJ y(ci))es.
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Hence, the v(¢;)’s are a K-linear combination of the e-coefficients of v(z). In particular, the
['-orbit of the e-coefficients of x is contained in the K-span of the e-coefficients of the points
in the I'-orbit of . R

Now assume that the [-orbit of = has finite-dimensional K-span Dy inside of D. We aim
to prove that in such cases, all ¢; lie in K, (as then z € > Ke; = D, as desu"ed) The first
step is to show that these coefficients satisfy the finiteness hypothesis relative to K that x
does relative to lA); that is, we will reduce our problem to the special case D = K.

The e-coefficients of all points in Dy are collectively contained in a finite-dimensional K-
subspace of I?Oo (namely, contained in the K-span of the e-coefficients of a K-basis of Dj).
In particular, the e-coefficients of all of the points v(z) (as we vary v € I') are contained in
a finite-dimensional K-subspace of K. But we have already seen that the I'-orbit of each
¢; is in the K-span of the e-coefficients of all points v(z). Hence, the I'-orbit of each ¢; has
finite-dimensional K-span inside of K o+

We have now reduced ourselves to the special case D = K. Since the K-span of the
I'-orbit of a point in IA(OO is visibly I'-stable, it is equivalent to prove that any I'-stable
K-subspace W C K., with finite K-dimension is contained in K. (This property makes
sense without requiring as we do that I' is 1-dimensional as a p-adic Lie group, but Tate
gave counterexamples in such wider generality with K., /K replaced with Galois extensions
M/K for which Gal(M/K) is a higher-dimensional p-adic Lie group.) Since Koo N K = Ko
(Exercise 2.5.1), it suffices to prove that all elements of W are algebraic over K.

Recall that we arranged I' ~ Z,, so it has a topological generator 7,. This acts on W
over K with some characteristic polynomial that splits over a finite Galois extension K'/K
inside of K. Observe that v, preserves K'W = image(K' @x W — K’ Koo =K /) inside of
K /., though it generally does not act K’-linearly. But consider the situation after replacing
K with K', K. with K/, W with K'W, and I" with the corresponding open subgroup
(identified Wlth Gal(K ! / K ")) which leaves all elements of K’ invariant. In this case 7q is
replaced with some ~f , and since K'W is spanned over K’ by W we see that the eigenvalues
of 7§ viewed as a K’-linear endomorphism of K'W are Gg-conjugates of the p"-powers of
the eigenvalues of vy on W. In particular, by replacing K with K’ in this way (which is
harmless for the purposes of the algebraicity property that we need to establish) we are
reduced to the case when 7, acts with a full set of eigenvalues in K*.

Let w € W be an eigenvector for the yp-action, say with corresponding elgenvalue A. Since
70 — 1in I as a — 400, by continuity of the I'-action on K. we get 70 w — w. That is,
NPw — w. Since w # 0, multiplying by 1/w on Ko gives \»" — 1 in K., and hence in K.
We conclude that A € 1 + mg. By Lemma 14.1.9, all eigenvalues A of 7y on W are p-power
roots of unity (as otherwise vy — A acts injectively on K ~)- Thus, there is an r so large that
X" =1 for all eigenvalues \ of 7y. By replacing K with K, and 7, with ygr, we are brought
to the case when 7 has all eigenvalues on W equal to 1. That is, 7 — 1 is a nilpotent
operator on W. But by (TS3), 7o — 1 acting on K, = K ® X has 7y — 1 acting invertibly
on X and of course as 0 on K. We conclude that the only vectors on which v9 — 1 acts in a
nilpotent manner are those of K, so W C K. (Note that the current K is a finite extension
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of the original one, so we have not proved anything stronger than initially expected.) This
completes the proof of Theorem 15.1.5. [ |

Corollary 15.1.6. The functor Dge, : Repg, (Gx) — Repg (') is an equivalence of cate-
gories, quasi-inverse to Cx Q.. (+). Likewise, the functor of H-invariants is an equivalence
Repe, (Gx) — Repp_ ('), quasi-inverse to Cx @z (¢).

Proof. Combining Theorem 15.1.5 and the discussion following Lemma 15.1.3, we have seen
that Dge, makes sense as a functor and is fully faithful. By construction it inverts the scalar
extension functor, and by Theorem 15.1.2 it is essentially surjective. Theorem 15.1.2 likewise
gives that W = Cx @z W for any W € Repg,, (G ), and Proposition 2.1.2 gives that for

any D € Rep 7. ([') we have
(CK ®f{oo E)H = Cg ®f{oo ﬁ = ﬁ
This establishes the other equivalence. [ |

To get a deeper understanding of the I'-action on general objects D in Repg_(I'), the
main tool is the Sen operator. It is the focus of the following result, and will depend in a
mild manner on the specific ¢ : Gx — Z; that we used at the start.

Theorem 15.1.7 (Sen). For each D € Repg_(I') there is a unique K -linear endomorphism
©p = Opsen 0n D such that for all x € D we have

(15.1.2) 7(z) = exp (log(4(7)) - Op,sen) (7)
for all v in an open subgroup T',, of T'.

Remark 15.1.8. Before we prove the theorem, it will be helpful to make several remarks on
what the theorem means.

(1) It may look like a semilinear K-analogue of Grothendieck’s Theorem 8.2.4 in the
(-adic case, but it really is not since (i) © p gen 1S n0t a nilpotent operator, (ii) (15.1.2)
only holds for v in a neighborhood of 1 depending on x.. If D were a linear repre-
sentation space rather a semilinear one over K, then the formula (15.1.2) with the
factor log () removed would reflect nothing more or less than the fact that I' is a
1-dimensional p-adic Lie group (so the mapping I' — GL(D) would be its own “1-
parameter subgroup”, up to the fact that the coefficient field K, is not complete).
The interesting thing is that we can get such a formula even though the action is just
semilinear.

(2) It may initially seem that the formulas for v(cz) and ~(z) are inconsistent for x € D
and ¢ € K, as the right side depends K-linearly on x whereas the left side is
merely I-semilinear. But recall that (15.1.2) is only valid for v in a neighborhood of
1 depending on z. For any particular ¢ € K, we have ¢ € K, for some large n, or in
other words ~y(c) = ¢ if we take v near enough to 1 in I'.

(3) Next, we address the meaning of exp(c¢T’) as in the statement of the result (with
c€ Ky and T : D — D a linear self-map). First of all, if we pick a K-basis of D
then the matrix for 7" involves only finitely many elements of K., so they all occur in
some K, and hence the convergence issues really take place over the field K,, which
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has the virtue (unlike K,!) of being complete. Hence, the convergence aspect is
insensitive to the fact that K, is not complete. But does convergence make sense
even at the level of some K,,-model for the situation?

Over a p-adic field (or really any complete non-archimedean extension field over
Q,) the p-adic exponential on endomorphisms of a finite-dimensional vector space
D has finite (positive) radius of convergence near 0, so for any linear endomorphism
T of D if we take « sufficiently near to 1 (depending on T') then log(¢(v))T can be
made as close as we wish to 0. Thus, exp(log(¢())T") always makes sense for ~y close
to 1, depending on T'. (This is not the only reason why I', depending on x intervenes
in the theorem, as the proof will show.)

Now that we have parsed the meaningfulness of the theorem, we are ready to prove it.

Proof. First we check uniqueness. In general, if T,T" : D = D are linear endomorphisms
and exp(log(v) - T') = exp(log ¢ (y) - T") for all v € I sufficiently near to 1, then we claim
that 7' = T'. To see this, we observe that for v near enough to 1 (depending on 7" and
T") this common exponential is as close to 1 as we please. Hence, for such v we can apply
the p-adic logarithm; as with the exponential, there are no convergence problems despite
working over the non-complete field K, since the relevant calculations all occur over some
K,, with n sufficiently large. This gives log () -T = log(y)-T" for all «y sufficiently near to
1in I, and choosing such « for which 1(7) # 1 but ¢(~) is near to 1 (e.g., ¥(7) = 1 mod p?)
ensures that log1(v) # 0. Thus, T'=T". The proves uniqueness.

Now we prove existence of the Sen operator. Pick a K -basis e = (e1,...,¢e4) of D, and
let U: ' — GL4(K4) be the continuous 1-cocycle describing the action of I' relative to e.
By Exercise 14.4.4(3), U has image contained in GL,4(K,) for some n. Also, by continuity of
the 1-cocycle, for v € I sufficiently near 1 we have v(U, — 1) > ¢ > 0 with a fixed constant
¢ (e.g., ¢ = 1). Consider such v with n(y) > n; i.e., v acts trivially on K. This cuts out
an open subgroup I in I' acting trivially on K,, and by shrinking I’ some more we may
arrange that also I ~ Z,,. On this open subgroup subgroup the 1-cocycle condition becomes
Usine = U, U, in GLg(K,) for all vq,7v2 € I, so v +— U, is a continuous linear representation
of I'" over K,, . In particular, if x = > ¢;e; with all ¢; € K, then for all v € T” the point
v(z) =3 civ(e;) has e-coordinates U, (c) where ¢ = (ci, .. .,cq) € K2

For v € IV, the sum

log(U,) = ) #(U7 —1)™ € GLy(K,,)

m>=1

converges and depends continuously on 7 since U is a continuous map and v(U, — 1) is
uniformly bounded away from 0 on I". It is easy to check that log(U,,/) = log(U.,) +log(Us)
for all v,+" € I, so in particular log(U,») = nlog(U,) for any v € I" and n € Z. But we
also have log(1(7")) = nlog(¢ (7)) for any v € IV and n € Z. Hence, if we pick a topological
generator vy of IV ~ Z, then for any nonzero n € Z we have log(¢ (7)) # 0 and the ratio
log(Uyn)/ log(w (7)) is independent of n. That is, the continuous map I — {1} — GL4(k,)
defined by v — log(U,)/log(¢(7)) is constant on the dense subset of 7{’s with n € Z — {0},
whence it is constant. (Note that log(¢(7y)) # 0 for any v € IV — {1}.)
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We have proved that it is well-posed to define

@S p= 10g<U7)
T log(¥(v)
for any v € I'" — {1}. We then have

log(U,) = log(¥(7)) * Osen,p

for all v € T, even v = 1 (since U; = 1 by the cocycle relation). By shrinking I'" a bit
more in order that exponentiation of both sides makes sense and exp(log(U,)) = U,, we get
U, = exp(log(¢(7)) - Ogen,p) in Maty(K,). For any x € > . K,e;, applying U., to the vector
of e-coordinates of = in K, yields the e-coordinates of y(z). In more intrinsic terms, we have
prove (15.1.2) for all z € Y K,e;. To handle z € ) K,,e; for m > n we simply shrink I
some more so that it acts trivially on the K, coefficients. This gives I', depending on z, as
each specific v € D = )" K,e; lies in ) K,,e; for some large m > n (depending on z and
the choice of e). This proves the existence. |

€ Maty(K,,) C Maty(Ko)

Fix z € D, and view the formula (15.1.2) as an identity of continuous maps I', — D. By
differentiating it at v = 1 we arrive at the formula

G
(1513) @Sen,D(x) ’lyl_r)fi 1Og(¢(7))
in D. (It is not obvious a-priori that this limit exists.) This formula also makes explicit how
the Sen operator changes if we change the initial choice of ¢ (the effect is a constant scaling);
the notation Ogen p, Would be more accurate (though v is fixed throughout Sen’s theory).
The traditional case is to take Ko, = K (u,~) and ¢ to be the p-adic cyclotomic character.

Remark 15.1.9. In view of the property in Theorem 15.1.7 that uniquely characterizes the
Sen operator, or by using (15.1.3), this operator is unaffected by replacing K with a finite
extension L inside of K (and replacing D with L ®x D, due to Exercise 15.5.2).

Corollary 15.1.10. For D € Repg_(I'), the K-linear operator © p = Ogenp satisfies the
following properties.

(1) The operator Op is I'-equivariant, and it is functorial in D. In particular, its char-
acteristic polynomial has coefficients in K.

(2) The kernel ker Op is equal to Ko @k D' and consists of precisely those x € D whose
[-orbit is finite (i.e., it is the mazimal K -subspace of D on which the T"-action is
discrete). In particular, ©p is an isomorphism if and only if D' =0, ©p = 0 if and
only if D has discrete I'-action, and dimyg D' < dimg__ D with equality if and only
if ©p is an isomorphism.

Proof. Since I' is commutative, the I'-equivariance of ©p follows from (15.1.3). The functo-
riality follows from (15.1.3) as well.

Now we consider (2). First observe that since I' acts on K., with finite orbits, we can
see just from definitions that the set of x € D with a finite I'-orbit is a K-subspace. By
continuity of the I'-action on D, a point x € D has a finite I™-orbit if and only if an open
subgroup of I' fixes x. Equivalently, x has a finite I'-orbit if and only if for all v € T’
sufficiently near 1 (and at least requiring v € I';), exp(log(¢(7))Op)(z) = z. If Op(z) =0
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then this latter identity certainly holds for all v € I',. Conversely, consider x € D with a
finite I'-orbit. We have y(z) = « for all v € I, that are sufficiently near to 1, so by the limit
formula (15.1.3) we see Op(x) = 0.

We have shown that D’ := ker ©p is the K -subspace of vectors with discrete I-action.
In particular, it contains the K-subspace DT, so D'" = D', But in view of the discreteness
of the semilinear action of I' = Gal(K,/K) on D', we can apply classical Galois descent to
conclude that D' = K., @5 D'". [ |

Here is an analogue for Oge, of the compatibility properties in Lemma 15.1.3 for Dgg,.
The formulas are exactly as in the theory of Lie algebra representations, which makes sense
since (15.1.2) shows that the Sen operator is like a derivative at v = 1 for a representation.

Lemma 15.1.11. For Dy, Dy € Repg_(I'), the Sen operators on Dy ® Dy, Dy ®g., Dy, and
Hompg,_ (Dy, Do) are respectively given by:

L4 @Dl@Dz = ®D1 S ®D2;
® Op,ep, =Op, ®¥1+1®6Op,,
® Onom(ny,0:)(T) = Op, 0T —T 0 Op,. In particular, Opv({) = —L 0 Op = —O}({).

Proof. In view of the unique characterization, in all cases it suffices to check that the right
side “works”. The cases of direct sums and tensor products therefore go exactly as in the
calculation of /-adic monodromy in the discussion following Definition 8.2.5. To handle
Hom (D1, Dy), the isomorphism Hom(D;, Dy) ~ Dy ® DY reduces this to the case of duals.
Finally, to prove O}, is the Sen operator on DY we again argue as in the case of (-adic
monodromy. |

It is natural to ask how much information is lost by passing from an object D € Repy_ (I)
to the associated pair (D, ©p) in the category #k_ consisting of a finite-dimensional K-
vector spaces equipped with a linear endomorphism (i.e., the category of K..[X]-modules
with finite K -dimension). There are nontrivial constraints on the possibilities for ©p
(e.g., its characteristic polynomial must have coefficients in K'), so this functor is not essen-
tially surjective in general (but see [40, §2.5] for a description of the essential image when
k is algebraically closed). This functor Repy (I') — k. also cannot be fully faithful
since Hom-modules in Repy_ (I') are merely K-vector spaces (due to the action of I' being
K .-semilinear rather than K-linear) whereas K, acts on everything in .#x_. But this
discrepancy is easy to explain:

Proposition 15.1.12. For Dy, D, € Repg._(I'), the natural map
Ky QK HomRepKoo @ (D1, Da) — Hom g, ((Dl, OSen,1), (D2, @Sen,z))
18 an isomorphism.

Proof. Consider D = Homg_ (D, D) as an object in Repy_(I'). By Lemma 15.1.11(3), this
map is Ko, @ D' — ker(©p). Hence, it is an isomorphism by Corollary 15.1.10(2). [ |

Despite the functor D ~~ (D, ©p) not being fully faithful, it at least retains information
about isomorphism classes, as follows.
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Corollary 15.1.13. Objects D1, D, € Repy_(I') are isomorphic if and only if (D,©Op,)
and (Do, ©p,) are isomorphic in Sy .

Proof. Functoriality of the Sen operator proves the “only if” direction. For the converse,
consider D = Homg_ (D;, D;) as an object in Repy_(I') and assume that the (D;,©p,)’s
are isomorphic (so dim Dy = dim D,). This says precisely that ker © contains an element of
D that is a linear isomorphism. The condition that D; and D, be isomorphic is precisely the
condition that D' contains an element that is a linear isomorphism. By Corollary 15.1.10(2)
we have ker ©p = K., ®x D'.

Our situation is now an instance of the following. Let F’/F be an algebraic extension of
fields with F infinite (such as K /K), and let V/ and V; be finite-dimensional vector spaces
over F” with the same dimension (such as D; and D; over K,). Consider a finite-dimensional
F-subspace V inside of Homp (V/, V3) such that V' := F' ®p V' — Homp (V/, V) is injective
(e.g., D inside of D). We wish to prove that if V' contains an F’-linear isomorphism V/ ~ V,
then V' also contains a (possibly different) F’-linear isomorphism. The basic idea is that the
isomorphism condition is a Zariski-open condition, and a non-empty Zariski-open locus in
an affine space over an infinite field always has a rational point.

To be more precise, by expressing F” as a direct limit of its finite subextensions over F', we
reduce to the case when [F’ : F| < co. Now let V be the affine space over F' corresponding
to V, so the base change V., is related in the same way to V’. Suppose there is given a
non-empty Zariski-open set U’ in V' (e.g., the overlap of V' and the locus of isomorphisms,
in the motivating example). We want U’(F”) to contain a point which comes from V(F').
Every non-empty Zariski-open locus in an affine space over an infinite field contains a rational
point, so it suffices to show that U’ contains the preimage of a non-empty Zariski-open set
U in V. Equivalently, we want the proper Zariski-closed complement Z' = V., — U’ to
have non-dense image in V. This follows from dimension and irreducibility considerations,
applied to the natural map Vp — V.

[

We promised at the outset that the Sen operator would allow us to generalize Hodge—Tate
decompositions to arbitrary objects in Repg, (G ). To see how this goes, look at Exercise
15.5.4.

15.2. Sen theory over Bj;: the descent step. Now we prepare to recast the classical
Sen theory in a manner that will relate p-adic representations to p-adic linear differential
equations, and thereby give an entirely different way of characterizing the de Rham condition;
this is due to Fontaine [23, §3]. Briefly, we will replace Ck in Sen’s work with B, essentially
recovering Sen’s theory as the t-torsion case (though it must be noted that Sen’s work over
Crx = Bji /(t) will be essential for getting the Bjs-version off the ground). The differential
equations we eventually get will be formal; we will work over formal power series and formal
Laurent series rings, rather than over an open disk or open punctured disk. In §16 we
will prove the “overconvergence” of p-adic representations, which says that these formal
differential equations really converge with positive radius.

The starting point is the observation from Remark 5.2.3 that a p-adic representation V'
of Gk is de Rham if and only if Byr ®q, V' viewed as a semilinear representation space
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for Gi over Bgg is identified with a ‘trivial” such object, namely Bl (with n = dim V).
If V' is not de Rham then Bgr ®q, V' is a rank-n finite free Byjr-module equipped with a
semilinear G'g-action, but it is not G g-equivariantly isomorphic to a direct sum of copies of
Bar. Thus, it is natural to ask what can be said about the general structure of semilinear
G i-representations on finite-dimensional Bgr-vector spaces. The same question with Cg
replacing Bgr was the focus of Sen’s work in §15.1.

In the work of Tate and Sen, continuity conditions were essential. Unfortunately, Bag
has no evident topology compatible with the very useful one on Bjy. Thus, we will study
continuous Bji-semilinear representations of Gx. Another way to think about working with
B3, rather than Byg is that Bj, is a complete discrete valuation ring with residue field C,
so working over Bj, is akin to “lifting” Sen’s theory over Cx up into Fontaine’s theory.
The proofs will show that this is exactly what happens: many proofs will rest on inductive
arguments for which the base of the induction is Sen’s work over Cg.

For technical reasons, it will be convenient to consider Big-semilinear representations of
G on finitely generated Bjz-modules that may not be free. Just as Sen’s work passed
between Cj and [A(oo via the formation of Hg-invariants, we will now try to do the same
with Bjz-coefficients and the subring Li; = (Bjz)"*. Since we now wish to be in the
setting of interest for p-adic Hodge theory, Sen’s theory is of interest with the basic infinitely
ramified character ¢ : Gx — Z,; in that theory taken to be the p-adic cyclotomic character
X. Hence, in this section we work with the subfields

Koo = K(upe), K, =K((n)
in K and the groups
FK = Gal(KOO/K), HK = GKoo = ker(GK - FK)

Recall from Exercise 4.5.3 that Bj; has an interesting topology defined via the identifi-
cation Bjp = lim B,,, where B, = W(R)[1/p]/ker(6q)™. Explicitly, in Exercise 4.5.3 we
topologized Bj; using the inverse limit topology from the topology on the B,,’s defined by
a “decay of negative-degree Witt coordinates” topology on W(R)[1/p] (which made W(R) a
closed subring having its weak topology from Definition 13.5.4). It was also seen in Exercise
4.5.3 that the action of Gk on Bjy is continuous for this topology, the topology is complete
(with a countable base of open W(R)-submodules around 0), the residue field Cr of Bj;
gets its valuation topology as the quotient topology, and the multiplication map on Bjz by
any uniformizer (e.g., t) is a closed embedding. Finally, we recall also from Lemma 4.4.10
that Bj; has a canonical Gx-equivariant structure of K-algebra (but recall from Remark
4.4.11 that the structure map from K is not continuous, wherereas the structure map is
continuous on any finite extension of Ky or K§* by Lemma 4.4.10).

Lemma 15.2.1. The ring of invariants L, := (Biz)®% is a closed K.,-subalgebra of Bin
that is a complete discrete valuation ring with uniformizer t and residue field I?Oo (equipped
with its valuation topology as the quotient topology). Moreover, the multiplication map t :
Liz — Lig is a closed embedding.

The topological ring Ll is separated and complete for its subspace topology from Bi.
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The proof of this lemma may seem longer than expected, but it is crucial to keep track of
the topological structures as we do in this lemma. Otherwise later considerations would run
into a brick wall.

Proof. By continuity of the action of G on Bjr we see that L is closed. It then follows
that L, is separated and complete for it subspace topology, as this holds for Bj;. By

definition this subring contains I K, and since G acts on t through the character y
whose kernel is Hyx we see that ¢ € L};. Since ¢ is a uniformizer of Bjy, it therefore follows
from the definition of L}; that an element of L}; is a non-unit if and only if it is in tL}5.
Thus, L3 is a discrete valuation ring with uniformizer ¢.

By the completeness of B as a discrete valuation ring, there is a unique local map
Koo[T] — Bjy as K-algebras satisfying T+ ¢, and (in view of the ideal theory of K,.[T])
it is injective. We may therefore identify K [T] with a subring K. [t]. (This subring is
canonical, though ¢ is only canonical up to Z;—multiple.) By t-adic separatedness of By,
the subring K [t] is contained in Lj;.

Since Bjy is t-adically separated and complete, with its topology finer than the t-adic one,
the subring L}, that is closed for this finer topology is also closed for the ¢-adic topology.
That is, Ll; is a complete discrete valuation ring. Since L, is closed in Bl and the t-
multiplication map on Bj, is a closed embedding, it follows that t-multiplication on L}y is
also a closed embedding.

It remains to show that L}; has residue field identified (topologically, using quotient
topology) with the subfield IA(OO inside of the residue field Ck of Bjz. Note that it is harmless
to replace K with K, for any single n, so we can arrange that K. /K is a totally ramified
Z,-extension. The G-equivariant projection map Bj — Cx of W(k)[1/p]-algebras is a K-
algebra map due to how the K-algebra structure is defined, so it carries L into Ch* = Koo
(Proposition 2.1.2). Hence, the residue field L};/(¢) is a subfield of Ko containing K.

To show that Li;/(t) = Ko as fields (setting aside the quotient topology aspect for a
moment), it suffices to show that Lj; hits Oz = 5}(00 under 0q : Bi; — Cg. This
requires constructing “enough” elements in Lj;. The theory of perfect norm fields will
provide what we need.

The subring W(Ry, ) inside of W(R) C By is Hx-invariant and so is contained in L};. By
Hg-equivariance, the map 6 : W(R) — O¢,. carries W(Rk,_, ) into ﬁg}f = O . Moreover,
by Corollary 13.3.10 this map

(15.2.1) W(Rk..) — Op_

is surjective modulo adz  for some nonzero proper ideal a of some Of,,. Since aV C pOk,
for some N > 1 and H acts trivially on the copy of K, inside of Bjy, by iterating the
surjectivity of (15.2.1) finitely many times we see that for some large n, the map

(15.2.2) Ok, - W(Rk..) = O _/(p)

is surjective. But Ok, - W(Rg_ ) is identified with Ok, @wu) W(Rk.) due to K, /K being
totally ramified and W (Frac(Rg_ )) having absolute ramification degree 1 over W (k). Thus,
Ok, W(Rk.) is p-adically separated and complete (here using that Ry is perfect). We
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may therefore use p-adic successive approximation with (15.2.1) to infer that Ok, W(Rg_))
is carried onto Oz by 6. Since Ko, and W(R,,) are contained in (Bjy)"* = L, we
finally get the required image R

The preceding argument also shows that L} — K., is an open mapping (when using the

valuation topology on IA(OO), so the quotient topology on the residue field K, of L; is its
valuation topology. |

Exercise 13.7.9(4) applies to both Bj; and L as topologized discrete valuation rings (with

the finer topologies as discussed above that make their residue fields Cx and K., acquire
the valuation topology as quotient topology) . Hence, finitely generated modules over these
rings admit a functorial Hausdorff topological module structure, and Exercise 13.7.9(5) shows
that these topologies are compatible with short exact sequences. It is important to check
the topological compatibility of inverse limits as well:

Lemma 15.2.2. Let N be a finitely generated module over the topologized complete discrete
valuation ring A € {Big,Lix}, and endow N with its natural topology. Letting m denote the
maximal ideal of A, the natural continuous linear bijection

N — lim N/m'N
pa—
18 a homeomorphism.

Moreover, for each n > 1 the quotient topology on Li; /t"Li; coincides with its subspace
topology from B t”B;rR

Proof. By Exercise 13.7.9(5), for the claim concerning inverse limits it suffices to treat the
case N = A. For A = BJ; the desired compatibility expresses the definition of the topology
on Bj; as an inverse limit. For A = L, the topological identification Bj; = lim B;R t"Bix

carries L, over to hm L} /t"L;. Hence, the problem comes down to the second part of the

lemma: checking that for each n > 1, the quotient topology on Ly /t"L}; coincides with its
subspace topology from B} t"BCJ{R The case n = 1 is part of Lemma 15 2.1.

In general we proceed by induction, so suppose the result is true for some n > 1. We can
characterize the two candidate topologies on L, /(t"™) (not yet shown to be the same) in
terms of convergence of sequences, so suppose {xl} is a sequence in L, /(¢"*!) that converges
to 0 in B3 /t"*'Bi;. We need to prove it conveges to 0 in L /t" L1, with respect to the
natural (quotlent) topology.

Consider the commutative diagram

0 — L /tLi, —== L}, /t" L}, —— L /t"LE, ——0

| l |

0 — B /tB5; )—>B+ /"B, — Bl /t"Biy —=0

in which the outer vertical maps are topological embeddings (by induction) and the rows
are topologically exact. Since {z;} converges to 0 in the middle term along the bottom, it
does so in the lower-right term as well. But the right most vertical map is a topological
embedding, so {z; mod "} converges to 0 in L1 /t"L}; with its quotient topology. Hence,
this lifts to a sequence {z}} in LI /t"T'Lix that converges to 0.
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Since we aim to prove that z; — 0 in L}, /"' L}, it is harmless to replace x; with z; —
to reduce to the case when {x;} comes from the upper left term in the diagram. But then
to check convergence to 0 within that term (which suffices for our needs), we can push the
problem into the lower left term of the diagram. This problem can be settled by checking in
the middle term along the bottom, where the convergence to 0 was our initial hypothesis. W

Definition 15.2.3. The category Rep Bd+R(G k) is the category of continuous semilinear rep-

resentations of Gy on finitely generated Bj-modules. The category RepLgR (T'x) is defined
similarly.

We willcompare these categories; Sen’s equivalence Repg, (Gx) =~ Repg_(I'x) (without
the decompletion step) will be the comparison on ¢-torsion objects.

Proposition 15.2.4. For any W € RGPBJR(GK)’ the L}y -module WHx s finitely generated

with a continuous Ik -action for its natural topology as a finitely generated L, -module, and
the natural B3y -linear map

(15.2.3) aw : Big @+ W — W

is an isomorphism. In particular, the rank and invariant factors of WHx over Ll; coincide
with those of W over Big.

Proof. We initially treat the case when W is a torsion Bj-module, and more general cases
will be inferred from the torsion case by passage to inverse limits. We will argue by induction
on the power of ¢ killing W that (in the torsion case) the natural map ay is an isomorphism
and the continuous cohomology group H!(Hy, W) vanishes. The overall method is similar
to the proof of completed unramified descent in Lemma 3.2.6, except that Hilbert 90 there
has to be replaced with results of Sen and Tate.

First suppose that tWW = 0, which is to say that W € Repg, (Gk). (Here we have used
crucially that Cx gets its natural topology as the quotient topology of Biy; that is, the
topology put on W through its structure as a finitely-generated Bj;-module matches its
natural topology as a finite-dimensional Cg-vector space! This latter topology is what is
used to define the continuity condition for the G'x-action on objects in Repg, (Gk).) In
this case the comparison map aw is the natural map Cx ®p WHr — W, and WHx =

IA(OO ® k., Dsen(W) by Theorem 15.1.2. Thus, the comparison map is Cx ® . Dgen (W) — W,
and this is an isomorphism by Theorem 15.1.2. The vanishing of H!(Hg, W) is part of
Proposition 14.3.3.

For the general torsion case, we assume W is killed by t"*! for some n > 1, with the result
known for ¢"-torsion objects. Consider the exact sequence

(15.2.4) 0—=tW —->W — W/tW — 0

in Rep BIR(G k). Since the outer terms are killed by ¢* (as n > 1), by induction we have
H!'(Hg,tW) = 0. Thus, by Exercise 2.5.3, the I'x-equivariant sequence of L1;-modules

0 — (tW)Hx — WHx — (W/tw)Hx — 0
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is exact. In particular, this shows that W#x is finitely generated over Li;. We now have
the following Bi,-linear diagram with exact rows:

0— Bji_R ®L§R (W) — BIR ®L§RWHK - B(JirR ®L§R (W/tw) — ¢

W J/ [e%7% l W /tW \L

0 W W W/tW

0

in which the top row is exact because the scalar extension Ll — Bjy is flat (as it is an
injective map of discrete valuation rings). The maps a; and aw/w are isomorphisms by
induction, so ay is also an isomorphism. Moreover, since (15.2.4) is topologically exact
(especially the left term has the subspace topology from the middle term), we have the exact
sequence

HY(Hg, tW) — HY(Hg, W) — H' (Hg, W/tW)
by Exercise 2.5.3. Hence, H'(Hy, W) = 0 because H'(H, tW) = H' (Hy, W/tW) = 0.

We have now settled the general torsion case, and in particular we note that the functor
of Hy-invariants is exact on the category of torsion objects, due to either the H!-vanishing
established in that case or because we use the comparison isomorphismm ay for torsion W
and the faithful flatness of BJ; over L1; (as it is a local extension of discrete valuation rings).
To establish the isomorphism result and finite generation of W« over L, in the general
case, since W is finitely generated over the complete discrete valuation ring Bz and the
map Lz — B is an injection between discrete valuation rings with a common uniformizer
(such as t), we can carry over the same argument building up from the torsion case as at the
end of the proof of Lemma 3.2.6 (beginning at (3.2.1)). [

Corollary 15.2.5. If W € ReijR(GK) then the finite L} -module WH5 equipped with its

natural Ik -action and natural LIz -module topology has continuous Tk -action. The resulting
functor

Repgy (Gk) — Reppt (')
W o~ WHE

is an equivalence of categories. A quasi-inverse is given by X ~» Bly ®LIRX'

Proof. We saw in Proposition 15.2.4 that W¥#x is a finitely generated LI;-module, and that
the natural comparison morphism

. Pt Hy

is an isomorphism (recovering the inclusion of W#x into ). But rather generally, from
Lemma 15.2.1 and Lemma 15.2.2 it follows (by passage to the case of cyclic modules) that for
any finitely generated Llz-module M, the natural continuous injective M — B, Bt M is
a homeomorphism onto its image (using the natural topologies on finitely generated modules
over Li; and Bjg). Hence, due to the Bi;-linear isomorphism ay, we see that the subspace
topology on WHx from W is its natural topology as a finitely generated Liz-module. The
continuity of the G g-action on W therefore implies the continuity of the I'x-action on W«
relative to the Liz-module topology on WHE 5o the proposed functor indeed makes sense.



CMI SUMMER SCHOOL NOTES ON p-ADIC HODGE THEORY (PRELIMINARY VERSION) 271

Consider any X € RepLIR(FK). Then V := Bj; Lt X with its natural topology as

a finitely generated Bji-module has continuous Gg-action (due to continuity of the Gk-
actions on Bl; and X, coupled with the description of the topology on X in terms of the
structure theorem for finitely generated Ll;-modules). Hence, V € RGPB(;R(GK)- Since

the Hy-action on V leaves elements of X invariant, we get V5 = X by the definition of
Li; (and calculation relative to a cyclic module decomposition of X). Together with the
comparison isomorphism from Proposition 15.2.4, we have now shown that the functors in
both directions are quasi-inverse to each other. |

15.3. Sen theory over Bj;: decompletion. Now we explain Fontaine’s Bjp-version of
Sen’s decompletion process. Inspired by Theorem 15.1.5 we are led to the following definition.

Definition 15.3.1. For X € RepLIR(F k), if X is torsion (equivalently, killed by a power of
t) then define X; to be the directed union of I'k-stable finite-dimensional K-subspaces of X,
and give it the subspace topology from X. In general, define X; = lim(X/t™X); and give it
the subspace topology from X = lim X /t" X . topologies.

Remark 15.3.2. Since X = liLnX/th topologically, by Lemma 15.2.2, the topology on X;
in general is also the inverse limit topology from the (X/t™X)¢’s.

Note that if X is killed by t™ then Xy is a K.[t]/(t™)-module. Hence, in general X; is a
K. [t]-module, and so we may view X ~» Xy as a functor from RepLgR(F k) to the category

of K.[t]-modules. The subring K. [t] C L}y is regarded as a decompletion, and we give it
the subspace topology from L. Since ¢ is ambiguous only up to Z;-multiple, the topology
viewed on the abstract ring K [7] is independent of the choice of ¢; we will not comment
on this again.

Exactly as in our analysis of the subspace topology on LI from BJ; in Lemma 15.2.1, we
get the following analogous result relating the topologies on L}, and K[t].

Lemma 15.3.3. The topological ring structure on K[t] makes the T g-action continuous,
t-multiplication a closed embedding, and the residue field K., have its valuation topology
the quotient topology. Moreover, on each K. [t]/t"™ K [t] the quotient topology is the sub-
space topology from L, /t™ LI (equivalently, from Big /t™Bin), and when finitely generated
Ko [t]-modules are topologized in accordance with Ezercise 13.7.9(4),(5) the conclusion of
Lemma 15.2.2 applies.

In particular, the identification K[t] ~ lim K [t]/t" Ko [t] of Keo-algebras is a homeo-
morphism.

Ezample 15.3.4. Consider the unit object X = L} in Repy+ (I'x). Then
(15.31) X/ X ) = (L /"L )r 2 Koo/ 7 K],

and we claim that this containment is an equality. In particular, passing to the limit, we
would get X¢ = K, [t] with the subspace topology from LI (equivalently, from Bjy).

For m = 1, the assertion that (15.3.1) is an equality says exactly that (IA(oo)f ~ K, aprop-
erty that was established in the proof of Theorem 15.1.5. In general we proceed by induction
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on m as follows. Granting the result for m > 1, we consider = € (L} /™' L1; ). By induc-
tion = mod t" € K [t]]/t" K[t] inside of (L /t™LiR)e. Thus, if T € Ko[t]/t™ T K o[t]
is a lift of x mod t,, then by replacing = with x — Z we_are brought to the case z €

LR /LR e Writing @ = t™ag with zy € Lz /tLI; = K, since I' acts on ¢ through
a Zy-valued character we see that ¢"-multiplication carries the I'g-orbit of xo bijectively

~

onto the I'k-orbit of x. Thus, zg € (K ) = Koo, so the induction is complete.

Example 15.3.5. Consider a t-torsion X € RepLgR(FK), so equivalently X € Repp (I'k).
(Note once again that there is no topological problem here, precisely because the quotient
topology on K ~ as the residue field of L}y is the valuation topology.) Let W = Cg ® 7. X
be the corresponding object in Repg, (Gk) under the equivalence in Corollary 15.1.6, so
X = Whk,

In such cases, by Theorem 15.1.2 and Theorem 15.1.5 we have Xy = Dg, (W), which is
finite-dimensional over K, with subspace topology equal to its natural topology as a finite-
dimensional K .-vector space. Theorem 15.1.2 also gives that the natural map I?OO(XJ K. Xt —
X is an isomorphism.

In view of Lemma 15.3.3, we are motivated to make the following definition:

Definition 15.3.6. The category Repy_ 4(I'x) consists of finitely generated Ko, [t]-modules
endowed with a semilinear action of I'x that is continuous relative to the natural topology
on finitely generated K [t]-modules (as in Exercise 13.7.9(4),(5)) when K[t] is endowed
with the subspace topology from Bj.

This definition is not so nice, since we do not have a good way of describing the “de Rham”
topology on K. [t] (acquired from how it sits in Bj;) in more direct terms. For example,
we do not even understand a convenient way to describe the topology on the subfield of
constants K, acquired from B! (It is almost surely not the valuation topology.) The
reason we use this topology in the definition of Repg_pj(I'x) is that it is what we must
use to establish Fontaine’s lifting of Sen’s theory. But the good news is that we get the
same category of continuous representations if we use a more accessible “linear” topology
on K, [t] that happens to also be what we must use when we make the link with formal
p-adic linear differential equations. The insensitivity of Rep_;(I'x) to such a switch in
topologies on K [t] is the content of the following lemma.

Lemma 15.3.7. Let M be a finitely generated K [t]-module. Let tqr denote the topology
on M acquired from topologizing K [t] by its subspace topology from B, and let Tean denote
the topology on M acquired from topologizing K [t] with the product topology of the valuation
topology on K.

A K [t]-semilinear T i -action on M is continuous with respect to Tean if and only if it is
continuous with respect to Tyr.

For t-torsion objects M thw two topologies coincide, but otherwise they seem to be in-
compatible in both directions (i.e., neither is finer than the other).

Proof. In both cases, the topologies are inverse limits of the topologies on M/t"M (see
Lemma 15.3.3 for 7qg), so we can assume that M is a K [t]/(t™)-module for some m > 1.
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The topology Tean is then the linear topology as a finite-dimensional vector space over the
valued field K, (so we shall call it the “linear topology”), whereas Tqgr is rather mysterious
but we have gained some understanding of its properties in our preceding work (so we shall
call it the “de Rham topology”).

Consider a K. [t]/(t™)-semilinear action of I'x on M. We must proved that it is continuous
for the de Rham topology if and only if it is continuous for the linear topology. We can assume
M # 0. The key point is that any such action descends to some K,,, and both topologies agree
on every K,,. To make this precise, first choose a minimal generating set {z1, ..., x4} for M
over K .[t]/(t™); thus, M is a direct sum of cyclic modules (K[t]/(¢t"™)) - x; where (t™) is
the annihilator ideal of z; (with 1 < m; < m). For each n, let M,, := ®&(K,[t]/(t™)) - x;, so
this is a K, [t]/(t™)-descent of M in the sense that

(Koo[t]l/(t™)) @kcppegyemy Mn = M

for all n. We also have formulas y(z;) = > a;;x; with a;; € K [t]/(t™) that are unique (due
to the cyclic structure), so there is a large ng such that a;; € K, [t]/(t™) for the finitely
many (7, 7)’s. Hence, the I'x-action preserves M, for all n > ny.

For n > ny, the continuity for the I'x-action on M relative to the linear (resp. de Rham)
topology on M is equivalent to the same relative to the analogous topology on M,, (defined
by replacing K., with K, everywhere), by adapting the proof of Lemma 15.2.2. Thus, it
suffices to prove that on M, these topologies coincide. In view of the cyclic decomposition
of such an M,,, this problem reduces to the cyclic parts, so finally we are reduced to checking
that when K,[t]/(¢t™) is viewed inside of B, /t™Bjy its subspace topology is its K,-linear
topology. Since [K, : K] is finite, so the K,-linear topology is the K-linear topology, it
remains to recall the general fact that any finite-dimensional K-subspace of the topological
ring B, /t"Bj; has its K-linear topology as the subspace topology (as the linear topology
is the unique Hausdroff topological vector space structure in the finite-dimensional case [7,
I, §3, Thm. 2. |

Here is Fontaine’s lifting of Sen’s decompletion theory:

Theorem 15.3.8. For any X € RepLgR(FK), the Ko[t]-submodule Xs is finitely generated

with continuous Tk -action for its natural topology as a finitely generated K [t]-module (so
Xt € Repg_y(I')). Moreover, the natural map

Bx : Lig Qkopg Xe — X

18 an isomorphism.
In particular, X; is dense in X and its natural K,.[t]-module topology coincides with its
subspace topology from X.

Since L} is complete for its own topology, we view this proposition as saying that X is
“the completion” of X;. We do not make a general intrinsic definition of completion in this
setting (nor will it be necessary to do so later).

Proof. Example 15.3.5 settles the t-torsion case (as [y is then exactly Sen’s isomorphism
Koo @5 Dsen(W) = WHE for W = Cx @ X).
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Step 1: injectivity of fx (torsion case). We now prove that for a general torsion
X, the natural map By is injective. The argument is by induction on the power of ¢ that
kills X. F filtering with X’ = tX and X” = X/tX, by left-exactness of inverse limits we
have a left-exact sequence of K [t]-modules 0 — X{ — Xy — X/. By flatness of the scalar
extension K [t] — Liz we get the following commutative diagram with exact rows:

0 — Lig ®kuelt] X — Lig ®kuolt] Xt — Lig @ ko] X¢

BX/\L ﬁxl ﬁX”l

0 X' X X" 0

Injectivity for Bx: and [Bx~ then implies the same for Bx, as required. Hence, for torsion
X we see that LZ{R ®K.o[1] Xt is a finitely generated L(J{R—module. But the scalar extension
Koo[t] — L}y is a local injective map of discrete valuation rings, so it is faithfully flat. Hence,
the finite generatedness descends (Exercise 15.5.7), so Xy is finitely generated over K [t]
for any torsion object X € RepLiR(F K)-

In view of the fact that we can describe the topologies on finitely generated modules over
the topologized discrete valuation rings K. [t] and L} in terms of any finite presentation,
it follows from the topological aspects of Example 15.3.4 that for torsion X the subspace
topology on Xy coincides with its natural topology as a finitely generated K. [t]-module. In
particular, the natural I'x-action on X; is continuous since continuity holds for the I'x-action
on X. That is, X; € Repg_ (I'x) when X is torsion.

Step 2: surjectivity of Jx (torsion case). To complete our treatment of the torsion
case, it remains to show that the injective By is an isomorphism for torsion X. We know
this when X is t-torsion, and once again we induct on the power of ¢ that kills X. We will
need a technical cocycle lemma that replaces the role of the H'-vanishing ingredient which
was used in the proof of Proposition 15.2.4.

Since the t-torsion case is settled, we may assume X # 0 and that X is killed by ™! with
some m > 1 such that the comparison map is known to be an isomorphism in the ¢"*-torsion
case. Consider the exact sequence

0—-X —-X-—-X"=0

in RepLgR(FK) with X” = X/t"X Kkilled by t™ and X' = t"X Kkilled by ¢. In particular,
X" € Repg_(I'k). The maps By and fx» are isomorphisms by induction, so a minimal
generating set {z1,...,zq4} for X{ over K [t] (i.e., a subset that lifts a basis of X{'/tX{'
over K) is also a minimal generating set for X" = X /t™ X over L1;. Hence, if we lift this to
a subset {Z1,...,Zq} of X we know that the Z;’s are a minimal generating set of X over LIz
(as the quotient map X — X/t™X induces an isomorphism modulo t). If We fix a choice
of z;’s, and will use them to find another choice {7} that is also a minimal generating set
of X; over K [t], thereby establishing the surjectivity of Sx. To find the ¥}’s we study the
["'k-action (much as we used vanishing of higher I'x-cohomology in the proof of Proposition
15.2.4).
Pick v € Tk, so v(Z;) = Y ay;7; for a;; € LI/t LE;. Since

X = @i(Ldn/t™ Lir )i
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with (¢™) the proper Li;-annihilator of Z; in X, each a;; is well-defined modulo ¢™ and
only matters modulo ¢™. Also, the matrix A := (a;;) € Maty(LI; /(™)) is invertible, as
such invertibility may be checked modulo ¢. In view of the uniqueness of the coefficients
modulo the appropriate annihilators, and the fact that the flat extension K [t] — Llz
commutes with the formation of annihilator ideals, since the x;’s are a minimal generating
set for the K [t]-structure X{ of X” = X/t™X, we can arrange that each a;; mod t™ lies
in K[t]/t"Kx[t]. In other words (since m > 1), we may assume A = Ay + t"™A; where
A € GLy(Kx[t]/t™ T Koo[t]) and Ay € Maty(K.o), with this Ko being exactly the residue
field of L.

Let U = Amodt = Aymodt € GL4(K). This computes the y-action on X/tX €
Rep; (I'k) relative to the basis {z; mod tX}. In particular, it depends continuously on ~
because the I'-action on X/tX is continuous. Thus, by taking ~ sufficiently close to 1 in
I'x we may and do arrange that v(U — 1) > ¢3 and n(y) > c¢3, where ¢; is as in (TS3). We
also may and do arrange that v is a topological generator of an open subgroup Z, inside of
[k fix this v.

Step 3: cocycle arguments (torsion case). For B := 1+ t"M € GLy(Li/t""'L3z)
with M € Matd(f(oo), consider the effect of applying B to the Z;’s. The effect on the matrix
A describing the y-action is to replace it with

B Ay(B) = (1 = t"M)A(L 4 x(7)"t"~(M))
=A—t"(MA—x(v)"Ay(M))
= A—t"(MU — x(v)"U~r(M))

in Maty(LJs /™ LI;). We want this to lie in GLg(Ku[t]/t™ T K« [t]) for a suitable choice
of M, so we first find a more manageable expression for the multiplier against " (which is
a matrix in Maty(Ko)) for general M.

Consider n > max(n(vy),n(Gg)) large enough so that U € GL4(K,) (as we may do since
U € GL4(K)). Hence, the matrix (1 — Ry, n)(A1)-U™t € Matd(f(oo) is killed entrywise by
the K,-linear projector Ry,  : I?oo — K, so we can apply Lemma 15.3.9 with V = U~! to
get that

(1= Run)(A1) - Ut =M — x(3)"Un(M") U

for some matrix M’ € Matd(f(oo) with entries in the kernel of the projector Ry, ,,. Multi-
plying on the right by U gives M'U — x(y)"Uvy(M') = (1 — Ru, »)(A1). Hence, if we take
such an M’ as the choice for M in the above definition of B we arrive at the formula

B™'AY(B) = Ay + t" Ry (A1) € GLa(Ko[t]/ (1)),

In other words, with such a choice for B we have found a minimal generating set {7} for X
over L}, on which the action by our fixed 7 is described by a matrix in GLg(Ko[t]/ (™))
Only finitely many elements of K, arises in this matrix, so for some big N this matrix
lies in GLy(Kyl[t]/(t™!)). Thus, the continuous 1-cocycle map 'y — GL4(Ljg/t™ ' L1s)
has restriction to the v%» that lands in GL4(Kx[t]/(t™!)) on the dense subset y%. But
Kn[t]/(#™ 1) is closed in Li; /™'LY, (with the complete Ky-linear linear topology as its
subspace topology), as may be checked by working inside of Bjz/t" "' Bj; and applying
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Lemma 15.2.2 and Lemma 4.4.12. Hence, the entire 427 is carried into GLq(Ky[t]/(t™11)),
so the yZr-orbit of the Z/’s is contained in a finitely generated Ky/[t]/(t™!)-submodule of
X.

Since yZ» has finite index in 'k, we conclude that the I'gx-orbit of each 7} has finitely
generated Ky[t]/(t™*1)-span. In particular, each 7} has I'g-orbit contained in a finite-
dimensional K-vector space, so each 7} lies in X;. This is a (minimal) generating set of
X over L, that lies in Xy, so the injective map Sy is also surjective. This completes our
treatment of the torsion case.

Observe also that since L, is faithfully flat over K [t] and Bx is an isomorphism in the
torsion case, the functor X ~~ X; from torsion objects in RepLIR(FK) to torsion objects
in Repy_ (') is an exact (as exactness may be checked after faithfully flat extension of
scalars).

Step 4: general case. The general case is inferred from the torsion case via passage
to inverse limits, as follows. We defined X; = lim(X/t™X);, and the results in the torsion
case tell us that each K [t]/(t")-module Y,, := (X/t™X); is finitely generated such that
Y1 /t" Yy ~ Y, for all m > 1. Hence, by general principles in commutative algebra
(Exercise 15.5.7), the inverse limit Xy is finitely generated over K..[t] with X¢/t™X; ~
Y, = (X/t™X); for all m > 1. In particular, the mod-t" reduction of Gx is identified with
Bxemx for all m > 1, so these reductions are all isomorphisms of Lj;-modules. Thus, (x is
an isomorphism in general.

The isomorphism property for Gy in general lets us settle the topological assertions. First,
the K [t]-module topology on X is the subspace topology from the LI;-module topology
on L;{R QKoo Xt (as the structure theorem for finitely generated modules lets us check
by reducing to cyclic modules, which we analyzed in Example 15.3.4). But (x is a linear
isomorphism over L1, so it is automatically a homeomorphism, and its restriction to X; is
the canonical inclusion. This proves that the natural K [t]-module topology on Xt is the
same as its subspace topology from X, so in particular the continuity of the I'k-action on
Xy is inherited from the continuity of the action on X. |

The following technical lemma on cocycles was used in the preceding proof. In the state-
ment we use the notation as in axiom (TS3) (which we proved in Sen’s situation; see Propo-
sition 14.1.7).

Lemma 15.3.9. Choose U,V € Maty(K,) such that v(U —1) > ¢3 and v(V —1) > c3, with
cs3 as in (TS3). Choose n = n(Gk) such that n > ¢z and U,V € Maty(K,). For any m > 1
and any v € 'k satsifying cs < n(y) < n, the map
£+ Matg(Ko) — Matg(Ko)
M= M = x(v)"Uy(M)V
restricts to a bijective self-map of the space of matrices whose entries lie in the kernel of the
projector Ry, n : Koo — K.
Note that the assumption on v forces n(v) > 0, so x(v) € 1+ pZ,,.

Proof. Since Ry, , is Ky-linear and I'g-equivariant, and U and V have entries in K, the
image of the mapping f has matrix entries contained in the kernel Xy, ,, of Ry, ,,. Thus, f
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is a K,-linear self-map of the K,-Banach space of d x d matrices with entries in Xz, ,. We
can therefore try to use a contraction mapping argument (with the sup-norm on matrices),
which is what we now do.

To streamline the notation, we observe that f(M) = (1—~)(M)+h(y(M)) where h(N) =

N — x(v)™UNYV for any N € Mat,(K ) with entries in Xp, ,. For any N we have
h(N) = (N =x(7)"N) +x(1)"((N =UN) + UN(1 = V))

with v(U) = 0, so v(h(N)) = min{v((1 — x(7)""H)N),v((U — 1)N),v(N(V —1))}. Hence,
v(h(N)) = v(N) + 6 where 6 = min{n(y),v(U —1),v(V — 1)} > ¢3. But by (TS3) in Sen’s
situation (Proposition 14.1.7), the K,,-linear operator 1 —+ on Xy, , is bijective, so it suffices
to prove bijectivity for that the self-map f = f o (1 —v)~! on the space of matrices with
entries in X, 5.

Since f(N) = N + h(y(1 —v)"YN)) and v((1 —v)"'(N)) > v(N) — c3, we see that
V(F(N)=N) = v((1=~)"Y(N)) +6 = v(N)+6 —cs. As 6 —¢3 > 0, the K-linear operator
f— id is a contraction mapping with sup-norm strictly less than 1. Hence, f: id —(id —f)
is bijective thanks to the usual geometric series expansion and the K-Banach property of
X, n relative to the sup-norm. n

We can now deduce the main result we have been after, together with a nice alternative
characterization of X;.

Corollary 15.3.10. The functor RepLgR(FK) — Repy q(Tk) defined by X ~ X; is an

equivalence of abelian categories, with quasi-inverse given by Y ~» Liz RKoofr) Y- This
equivalence preserves ranks and invariant factors. In particular, X is exact in X.

Moreover, for any such X, the subset X; is the directed union of the finitely generated
K [t]-submodules of X that are stable under the action of U'x. In particular, all such
submodules have a continuous T -action for their natural K [t]-module topology, and there
is one such submodule (namely, Xt) that contains all others.

Proof. The equivalence aspect is immediate from Theorem 15.3.8, coupled with Example
15.3.4 (to verify the quasi-inverse property relative to the scalar extension functor in the
opposite direction). In particular, Xt is exact in X.

It remains to show that any I'k-stable finitely generated K..[t]-submodule X{ of X is
contained in X;. By the exactness of X in X, the image of Xy in X/t"X is (X/t"X)s, so
it suffices to check that the image of X{ in X/t™X is contained in (X/t™X); for all m > 1
(as we have compatibly X = lim(X/t"X) and X; = lim X¢/t"X; = lim(X/t™X)¢). This
reduces us to considering the case when X is a torsion object.

Say X is killed by t™ for some m > 1, so X7 is a I'k-stable finitely generated K [t]/(t")-
submodule of the L1, /(¢#™)-module X. We need to show that each element of X{ has I'g-orbit
contained in a finite-dimensional K-subspace of X (as then X{ C X, by the definition of
Xg).

Pick v € 'k that topologically generates an open subgroup of the form Z,, and consider
the y-action on Xj. If we pick a finite generating set , ..., 2%y of X{ over K [t]/(t™) then
v(z}) = > air; for some a;; € Ko[t]/(t™). There are only finitely many a;;, and each is
represented by a polynomial over K., with degree at most m — 1, so for some large n we
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have that a;; € K,[t]/(t™) for all 4, j. Hence, the K, [t]/(t™)-span Y of the z}’s is y-stable
and hence yZ-stable. This is a finite-dimensional K-subspace of X; suppose for a moment
that it is closed in X, so it is y%»-stable. We would have then produced a finite-dimensional
K-subspace of X which contains a generating set of X{ and is stable under an open subgroup
[ of I'k. Applying a set of coset representatives of the finite set ' /T would then provide
a ['k-stable finite-dimensional K-subspace of X containing generators of Xj. That is, X7 is
generated over K [t] by a set of elements of X, so X{ C Xy as desired.

It now remains to check the closedness condition mentioned above, or more generally that
every finite-dimensional K-subspace of X is closed. Even better, we claim such a subspace
has its natural K-linear topology as the subspace topology, so closedness is forced by the
completeness of K. To check this claim about the subspace topology, it suffices to pass
to a larger finite-dimensional K-subspace of X. Since X is a direct sum of copies of LIz
or various quotients L, /(t™), we are reduced to checking that all finite-dimensional K-
subspaces of Li; and Li;/(t™) (any m > 1) have the K-linear topology as their subspace
topology. By Lemma 15.2.2, it suffices to do the same with the abstract L}, replaced by the
more accessible Bi;. This is Lemma 4.4.12. [ |

Theorem 15.3.11. The functor

Repy q(T'x) — ReijR(GK)

Y ~ BIR ®Koo[[t]]Y
is an equivalence of categories. A quasi-inverse is given by W ~- (WHK)f.
Proof. This follows by combining the equivalences in Corollary 15.2.5 and Corollary 15.3.10.
[

15.4. Fontaine’s functor Dg;;. The equivalence in Theorem 15.3.11 will create a link with
formal p-adic linear differential equations. Before explaining this, we make an important
topological observation. The mysterious “de Rham” topology on K [t] has done its work,
and now we want to forget about it and interpret the continuity condition in the definition
of Repg_ 1(I'x) by using the product topology on K. [t] via the valuation topology on K.
That is, for a finitely generated K [t]-module M, we wish to work with the topology on M
that is the inverse limit of the usual K..-linear topologies on the finite-dimensional quotients
M/t"™M (m > 1). Lemma 15.3.7 assures that this switch of topologies does not affect the
continuity condition on semilinear representations of I'x! So from now on we can and will
work with the more accessible topology that is a mixture of t-adic and K. -linear topologies.

Remark 15.4.1. When we work with K -linear structures (such as certain connections be-
low), the only topology that will generally matter is the t-adic one, since modulo any power
of t our modules will become finite-dimensional over K., and hence continuity conditions
will be satisfied for K-linear structures.

To discuss differential equations, we need a suitable module of Kéhler differentials for
K [t] over K that accounts for the topology on K [t]:
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Lemma 15.4.2. Consider pairs (M, 0) consisting of a finitely generated K..[t]-module M
and a K -linear derivation 0 : K [t] — M that is continuous relative to the natural topology
on finitely generated K, [t]-modules.

Among such pairs there is an initial one (Q}(m[[tﬂ/Koyd)’ and it is free of rank 1 on the

basis dt, with df = f'dt.

By Remark 15.4.1 (or the proof below), nothing would be affected if we worked just with
the ¢-adic topology and ignored the valuation topology on K. When thinking in such purely
algebraic terms, for which K, can be an arbitrary field F', we write Q}’Htﬂ P instead.

Proof. The content of the lemma is that 0(f) = f'O(t) and that the value of J(t) may be
assigned arbitrarily. Since the topology on M is the inverse limit of the linear topologies on
the M/(t™)’s, it suffices to treat the case when M is torsion. In this case even algebraically
we have the existence and uniqueness, so the only issue is to check that for any v € M the
K-linear derivation f + f'v is actually a continuous map. This map kills (™), so it
factors through a linear map between finite-dimensional K-vector spaces, and such maps
are always continuous for the linear topology. [ |

The following variants on Q}{w [/ Koo will be more useful for our purposes.
Definition 15.4.3. The module of meromorphic Kdahler differentials is

Qe (/K = Koo(t) Oretn QUi = Qe 1/1)

equipped with d : K ((t) — Q}{w«t» /i, defined by unique localization extension of the
universal derivation.

The module of logarithmic Kihler differentialsis QT = t="-Qj /K. inside of Q () Koo
equipped with the natural map d : K [t] — Q7.

Observe that Q7 is a finitely generated K [t]-module (even free of rank 1 with basis dt/t),
so it has a natural topology that mixes the t-adic topology and the valuation topology on
K. On the other hand, Q}{oo () Koo does not have a topology of this sort, but it has a useful
t-adic topology.

The above modules of differentials will allow us to define various notions of “module
with connection”. The motivation for bringing (the algebraic theory of) connections into
the picture comes from the correspondence in differential geometry between monodromy
representations of topological fundamental groups and vector bundles equipped with a flat
connection.

Definition 15.4.4. Let I’ be a field of characteristic 0. A logarithmic connection on a
finitely generated F'[t]-module M is an F-linear map

A dt
VM — M@r (™ Qppyr) = M7

that is continuous relative to the t-adic topology and satisfies the Leibniz Rule: V(Am) =
m&dX+ AV (m) for all A € F[t] and m € M.
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A meromorphic connection on a finite-dimensional F((t))-vector space V is an F-linear
map V:V — V Qpy) Q};((t» s that is continuous relative to the natural topology of finite-
dimensional F'((t))-vector spaces and satisfies the Leibniz Rule V(Av) = v ® dA + AV (v) for
all \ € F((t) and v e V.

The “logarithmic” aspect refers to the appearance of dt/t (“d(logt)”) in the definition.
The analogous definition without allowing the simple pole at t will not be useful for our
purposes.

Beware that although the pairs (M, V) or either logarithmic or meromorphic type form
an F-linear abelian category, one cannot form general F-linear combinations in connections:
such combinations generally ruin the Leibniz Rule (look at the m ® d A term), unless the
coefficients of the linear combination add up to 1.

Let us make the above notions of connection more explicit. First consider the logarithmic
case. We may uniquely write V(m) = Vy(m) @ (dt/t) with Vo(m) € M that depends
F-linearly on m. The necessary and sufficient conditions on Vo : M — M are that it is
continuous and F-linear and satisfies Vo(Am) = t(d A\/dt)m + AVy(m) for all m € M and
A € F[t]. In other words, Vo : M — M is a derivation over the derivation ¢ - d/d¢ on the
coefficient ring F'[t]. When M is finite and free, such connections can be described even more
explicitly; see Exercise 15.5.8. In the meromorphic case we write V = Vy ® dt instead, and
the condition is that Vo : V' — V' is F-linear, continuous, and satisfies Vo(fv) = f'v+ fV(v)
forall f € F(t) and v e V.

One good feature of logarithmic connections is that Vo(t"M) C "M for any » > 1. (In
the non-logarithmic case over F[t] with V = V,®dt we would only have Vq(t"M) C "' M,
which is sometimes not good enough.) Hence, logarithmic V’s are rather nicely-behaved
with respect to t-adic considerations. For example, if V is a logarithmic connection on M
then for any n > 1 there is a well-defined logarithmic connection on M /t"M satisfying
m mod t"M +— V(m) mod t"M. This collection of connections for all n > 1 uniquely
determines V, and so allows us to reduce to some problems to the case of torsion M.

Now the Sen operator works its magic:

Proposition 15.4.5. For any M € Repy_14(I'x) there exists a unique connection ¥V :
M — M ®k_q X" such that for all v > 1 and all v € M, we have

7(v) = exp(log(x (7)) - Varo)(v) mod ¢"M

for all v in an open subgroup 'k ., C I'x, where Vo : M — M is the K -linear map for
which V = Vo ® dt/t.

The congruential criterion makes sense since logarithmic connections are compatible with
reduction modulo ¢" for any r > 1, and the exponentiation makes sense since Vo mod t"M
is a K-linear endomorphism of the finite-dimensional K ..-vector space M /t" M.

Proof. Since logarithmic connections are compatible with reduction mod t™ for any m > 1,
to prove the existence and uniqueness it suffices to treat the case when M is a torsion
object. Thus, M is a finitely generated K [t]/(t")-module for some m > 1, so its topology
when viewed in Repg_(I'x) is its linear topology. That is, the I'g-action is continuous
relative to the linear topology on M as a finite-dimensional K -vector space. Hence, we
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may also view M as an object in Repy_(I'x), and so as such it admits (by Theorem 15.1.7)
a unique K.-linear Sen operator © : M — M such that for all v € M there is an identity
v(v) = exp(log(x(7))©)(v) in M for v € I' sufficiently near 1 (depending on v).

The conditions being imposed on the connection modulo "M for all » > 1 need only be
checked for large r, and so by taking » = m the condition on V,, is that for each v € M
there is an open subgroup I'k, in I'x such that

7(v) = exp(log(x(7))Varo) (v)

in M for all 7 sufficiently near 1 (depending on v). By differentiation, the only possibility
for the K-linear map Vo : M — M is that it is ©. Hence, the uniqueness is settled
and for existence we have to prove that the Sen operator is a derivation over t-d /dt. In
effect, when there is semilinearity of the I'x-action relative to a K [t]/(t"™)-module structure
(where y(t) = x(7)-t) we need to understand how the Sen operator interacts with the module
structure.

That is, for A € K [t]/(t™) and v € M we want O(Av) = tNv+AO(v), where X := d\/dt.
By K -linearity it suffices to check this for a monomial A = ¢¢ with 0 < e < m, and the case
e = 0 is trivial. For e > 1 the desired formula is

O(tv) = etv + t°O(v),

and if this holds for all v € M with e = 1 then by a straightforward induction on e we would
get the desired formula in general.

It now remains to prove that ©(tv) = t(v + O(v)) for all v € M. We plug into the limit
formula (15.1.3): for any v € M,

o (te) —t

O0) = 2 g xt)
—im XD =Ly i 2O
~ Mo Y TS o)
= tv +tO(v),

where the final step uses the continuity of the I'i-action (to infer that v(v) — v in M as
v — 1in k). [ ]

Thanks to Proposition 15.4.5, the additive and K-linear functor M ~~» (M, V) from
Repy 11('k) to the category of finitely generated K. [t]-modules equipped with a logarith-
mic connection is visibly exact and faithful.

Inspired by the theory of coherent sheaves in algebraic geometry, we regard a finitely
generated K. [t]-module M as analogous to a family of finite-dimensional K -vector spaces
parameterized by a small open disk centered at the origin, with M /tM being the fiber
over the origin. We view a logarithmic connection V on M as analogous to a system of
first-order linear ordinary differential equations (see Exercise 15.5.8), and the kernel MY =0
of the connection (or equivalently, the kernel of the associated K-linear endomorphism
Vo : M — M) as analogous to the global solutions to the differential equations. This
“solution space” is a K-subspace of M, and it is not obvious just from the definitions if it
is finite-dimensional in general. Experience from the theory of ordinary differential equations
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suggests asking if this solution space has dimension at most that of a “generic fiber” (solution
to an ODE is determined by its initial conditions).
For the connections arising above from I'g-representations, things work out very nicely:

Proposition 15.4.6. For any Y € Repg_(I'x) the K-vector space YVy=0 is finite-
dimensional there is an equality

Ko Qg YK =Y VY=

inside of Y. In particular, dimg (Y% is finite. Moreover:

(1) If Y is free as a K [t]-module then dimg (YTx) < dimg_ (Y/tY).
(2) ForY1,Y, € RepKooﬂtﬂ(FK),

Koo ®x Hompep, ) (Y1, Y2) 2 Homg, (Y1, Vi), (Ya, Vy,)),

where X, s the category of finitely generated K. [t]-modules equipped with a loga-
rithmic connection. If Y1 and Yy are free as K [t]-modules then

dimy (Hompep,, 00 (Y1, Y2)) < dimge, (Y1/6Y1) dimge (Ya/1Y2).

(3) ForY1,Ys € Repy_1(I'x), they are isomorphic if and only if (Y1, Vy,) and (Ya, Vy,)
are isomorphic as finitely generated K. [t]-modules equipped with a logarithmic con-
nection.

Proof. Let Y, = Y/t"Y with r > 1. Since Vy, ¢ is the Sen operator of Y, € Repg_ (I'x), it
follows from Corollary 15.1.10(2) that the natural map K., ®@xY,'* — ker(Vy, o) is bijective.
For fixed n > 1, we have

. TkY\ _ . Tk _ r
m(K, @k Y, ©) = K, @ mY, ' * = K, Qg Y
(we have to work with K, rather than K, to justify passing the scalar extension through the
inverse limit), and by left-exactness considerations we have !iLn,, YV = — yVy=0, Hence,
we get an injection K, ®x Y% C YV¥=0 inside of Y. Passing to the direct limit on n, we
get

(15.4.1) Ko @ YIE CYVr=0,

Before we prove this is always an equality (as have been established in the torsion case),
we prove that dimg YT is always finite. For this, by (15.4.1) it suffices to show that Y V=0
has finite K .-dimension. Consider the canonical short exact sequence

0—-Y Y —-Y"—=0

with Y = Y}, the torsion submodule and Y” its maximal K [t]-free quotient. From the
Leibniz rule we see that Vy preserves the torsion submodule, so for the finiteness of the
K -dimension of Y'V¥=Y it suffices to separately treat the torsion and free cases. The torsion
case is trivial since then even dimg,_ Y is finite. When Y is a finite free K.[t]-module, we
claim that dimg_ YV¥=0 is bounded above by the rank of Y over K [t]. More precisely,
upon inverting ¢ we can apply:
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Lemma 15.4.7. For any field F' of characteristic 0 and any finite-dimensional F((t))-vector
space V' equipped with a meromorphic connection NV, the natural map

F(t) ®r MY=" — M[1/1]
18 injective.
Proof. Consider a nonzero element of the kernel (if one exists) admitting a minimal-length
expression Y f; ® v; in elementary tensors. In particular, the f;’s are nonzero and the v;’s

are linearly independent over K. We may and do scale so that f; = 1. Applying Vy then
gives

0= Z(filvi + fiVvo(vi)) = Z fivi
since all Vyo(v;) = 0. But f] = 0, so by minimality of the dependence relation we must have

fI'=0 for all i. As we are in characteristic 0, this forces all f; € K. Hence, the relation
V] = — Zz>1 fiv; is a nontrivial linear dependence relation over K., a contradiction. [ |

We now know that YT% is always finite-dimensional over K, and also we have Y5 =
lim Y;'% with the ¥;'*’s all of finite K-dimension (at most dimg., Y,), so by a Mittag-Leffler
argument we get some big N such that for all sufficiently large r, the natural map

YT — image(V, — VIH)

is a K-linear isomorphism. Extending scalars to K, then gives that
Koo QK YFK = 1mage<Koo K KE—I?V — Koo QK Y;FK>‘
But we already know that K, ®x YI'% = Y V¥=0 for all r since all Y, are torsion objects, so

Koo @k YT¥ ~ image(V, {17 — V,V=)

for all large r.
The identification of these latter images (for large ) with the common space K., Q@ YT
shows that for sufficiently large r, the transition map Y, .1 — Y, induces an isomorphism

Ko @ YIE — K, @ Y5

Hence, these image spaces are all compatibly isomorphic to liinYTV":O = YVr=Y 50 the
injective map Ko @x Y5 < YVv=0 must be an isomorphism. In the special case that Y is
a free K [t]-module, Lemma 15.4.7 ensures that dimg (Y V¥=Y) is at most the rank of Y,
which is dimg__(Y/tY’). This proves part (1).

It remains to prove (2) and (3). For (2) we just apply the above conclusions to YV :=
Hompg14(Y1,Y2) € Repg_4(I'x), which is endowed with a logarithmic connection in the
habitual manner akin to what we have already seen for monodromy operators: Vy(f) =
Vy,of —(f®1)oVy, for f € Y. We compute that Y'x = Hompep, (k) (Y1, Y2) and
YVy=0 = Homgy,__ ((Y1,Vy,), (Y2, Vy,)), and the natural equality between Ko @k Y% and
YVy=0inside of Y translates into the desired natural map relating Hom-spaces. Thus, (2)
is proved.

To prove (3) we cannot apply the inverse limit method to reduce to the torsion case since
we cannot ensure the isomorphisms to be constructed (by the method of proof of Proposition
15.1.13) are compatible with change in torsion level. In general necessity is obvious, so we
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just have to show that if Homg,  ((Y1,Vy,), (Y2, Vy,)) contains an isomorphism, then Y;

and Y3 are isomorphic in Repy._(I'r), Let {z1,..., 24} and {y1, ..., ya } be minimal K [t]-

module generating sets of Y7 and Y5, respectively. Since Y; and Y3 are isomorphic as modules

with connection, so in particular as K [t]-modules, necessarily d' = d and a K.[t]-linear

map f:Y; — Y5 is an isomorphism if and only if its reduction f modulo ¢ is an isomorphism.
Let {f1,..., fu} be a K-basis of HomRepKoo[[t]](pK)(Yl, Y3), and let

fi € Homg (Y1/1Y1, Y2 /1Y3)

be the reduction of f; modulo ¢. Using the bases {z; mod tY;} and {y; mod Y5}, each f, is
described by a d x d matrix over K. By (2), {f1,..., fn} is a K -basis of

Homﬁxw ((YL VY1)7 (}/27 VY2))7
but this latter Hom-space contains an isomorphism. Hence, there exist A1, ..., A, € K such
that det(\y f, +---+A.f,) # 0. This implies that the polynomial det(X;f, +---+ X,.f,) €
Koo[Xy,...,X,] is non zero.
As K is infinite, there exist yy, ..., i, € K such that det(f) # 0 where f = pyfi +-- -+
tnfn. But f € HomRepKoo[[t]](pK)(Yl, Ys), so f is an isomorphism in RepKw[t]](FK). [ |

We now pass to the situation with Bqgr = Bji[1/¢] rather than BJ;, and likewise work
with K. ((t) rather than K [t]. This amounts to inverting ¢ in the preceding theory, so we
will work with the following “isogeny categories”:

Definition 15.4.8. The category Repp, (Gk) is the t-isogeny category of RepB;R(GK),
which is to say that it consists of finite-dimensional Bgr-semilinear representations of Gy
for which there is a G-stable B;-lattice on which the Gk-action is continuous relative to
the natural topology of the lattice as a finite free Biz-module. (All Gx-stable Bi-lattices
have the continuity property if one does, as we see by t-power scaling.)

The category Repg () (T'x) is defined similarly, using K. [t] in place of Byy.

Ezample 15.4.9. For V € Repq, (Gk), we have Bir ®q V' € Repp, (G ) since it is (Bj ®q,
V)[1/t].

We also will work with the subring Lag = B = (Big)"[1/t|= Liz[1/t], and we define
Repy,. (I'x) exactly as we defined Repp, (G ) above. For X € Repy, (Gk), we denote by
Xt the union of its K [t]-submodules that are finitely generated and stable under the action

of I'k. (This is inspired by the second half of Corollary 15.3.10.)
By combining Corollary 15.3.10 and Theorem 15.3.11, upon inverting ¢ we obtain:

Theorem 15.4.10. The functor

Repy 1) (I'x) — Repg,, (Gk)
Y ~ Bar @k ()Y

is an equivalence of categories. A quasi-inverse is given by W — (WHK)f.

Definition 15.4.11. A meromorphic connection V on a finite-dimensional K, ((t))-vector
space V' is regular if there exists a K [t]-lattice M C V (called a regular lattice) that is
stable under Vi, which is to say that V restricts to a logarithmic connection on M.
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We say that a module with meromorphic connection (M,V) over K ((t) is trivial (or
that V is flat) when the natural injective map K ((t) ®x MV~ < M is an isomorphism.
(Equivalently, dimy MV=° = dimy_ ) M.)

Upon inverting ¢, Proposition 15.4.5 now implies:

Proposition 15.4.12. Choose Y € Repy_ () (I'x). There exists a unique regular connection
Vy = Vyo ® %: Y =Y ®Qr ) Q}Q,o((t))/Koo such that for all reqular lattices Y in Y, all
r =1, and allv €'Y, there exists an open subgroup 'k, C I'x such that

7(v) = exp(log(x(7)) - Vyo)(y) mod 7Y
We thus have an additive and K-linear functor
RGPKOO((t))(FK) — Bt
Y= (Y, Vy)
Moreover, upon inverting ¢, Proposition 15.4.6 implies:

Proposition 15.4.13. (1) If Y € Reme((t))(FK), then K. @ YTK ~ Y Vy=0,
(2) [f}/l, }/2 S R‘epKoo((t)) (FK), then

Koo ®K HomROpKoo((t))(FK)(}/lu }/2) = Homg%);{w,t ((}/17 VY1)7 (}/27 VYQ))‘

(3) If Y1,Y2 € Repg_ (1) (T'k), then Y1 and Ya are isomorphic if and only if (Y1, Vy,) and
(Ya, Vy,) are isomorphic in Xk ;-

Definition 15.4.14. For V € RepQP(GK), we define Dgie(V) € Zk_ 1 to be the object
associated to the canonical K ((t))-descent of (Bar ®q, V)"* € Repy, . (k).

Fontaine’s main result linking de Rham representations and differential equations is ex-
pressed in terms of the functor

Dif : Repr(GK) - c@Koo,t
as follows:

Proposition 15.4.15. For any V' € Repq_ (Gk), V is de Rham if and only if the meromor-
phic connection on D (V') is flat.

Proof. The p-adic representation V' of Gk is de Rham if and only if the Byg-representation
Bar ®va is isomorphic to BgR compatibly with the Bqg-module structure and G g-actions.
By Proposition 15.4.13(3), this is equivalent to the flatness of the connection on Dgie(V). W

The equivalence in Proposition 15.4.15 opens up a whole new body of techniques (centered
on p-adic differential equations), provided we can show that the differential equations arising
from p-adic representations are not merely formal, but actually convergent on some open
disk (centered at 0). This convergence property is one of the aims of §16.



286 OLIVIER BRINON AND BRIAN CONRAD
15.5. Exercises.

Ezercise 15.5.1. Let ¢ : Gx — 7, be a continuous infinitely ramified character, with K a
p-adic field. We consider the associated functor Dge, on Repg,. (G k).

(1) Let W = Cg(¢") with r € Z. Prove that Dge, (W) is the canonical copy of K (¢")
inside of W.

(2) What if W = Cg(¢2P~Y%) for s € Z, — Z? (Note that ¢*P~ is valued in 1 + pZ,,
so raising it to a p-adic exponent makes sense.)

(3) Suppose instead that W = Cg(n) for a character n : G — Z; of finite order. Show
that if  factors through I' then Dge, (W) is the canonical K (n), but that this is
false otherwise. Can you describe a nice K.-spanning vector of Dge, (W) in these
other cases?

Ezercise 15.5.2. This exercise addresses how Dg,, behaves under finite extension on K within
K. Thus, to avoid ambiguity, for W € Repg, (Gk) let us now write Dgep, x (W) rather than
DSon(W>- _

For a finite extension K'/K inside of K, we can view W in Repg, (Gk). Using ¢,
and I" = Gal(K[,/K') thereby gives an object Dsen /(W) € Repg, (I") that is naturally
a K/ _-structure on the Cg-vector space W (compatibly with Gg-actions). Prove that
K’ @k Dgen, k(W) = Dsen /(W) inside of .

Ezercise 15.5.3. Choose W € Repg, (Gk) and let D = Dgen(W) € Repg_(I'). Let Op :
D — D be the corresponding Sen operator.

(1) Prove that a subspace of W/ C W is stable under some open subgroup of G if and
only if W' is stable under © . (Why does the analogy with Lie group representations
make this plausible?) Deduce that W is semisimple as a C -semilinear representation
of Gk if and only if ©p is a semisimple operator on Dge, (). Keep in mind that the
G g-action here is Cg-semilinear rather than Cg-linear.

(By Theorem 2.2.7 we have H!(Gg,Ck) # 0, which is to say that there exists
a 2-dimensional W which is a non-split extension of Cg by Cg, and Opg () is a
nonzero nilpotent operator for such W.)

(2) The operator ©p depends on the initial choice of infinitely ramified character v :
Gg — Z); that got the theory started. Using (15.1.3), show that twisting ¢ by a
finite-order character of I' has no effect on the Sen operator, so by twisting away the
Teichmiiller factor we now suppose that ¢ is valued in 1 + pZ, (so ¥* makes sense
for any s € O¢,, though it is valued in Z) only for s € Z,).

Prove that s € Oc¢, is an eigenvalue of Op if and only if Ck(1°) occurs as a
subobject of W. (Keep in mind that (15.1.3) only holds for v near 1.) How about
generalized eigenspaces?

(3) Writing ©p 4 to record the dependence on 1), how is © p 4 related to ©p ,, for nonzero
s€Z,?

Ezercise 15.5.4. Choose W € Repg, (Gk) and let D = Dgen(W) € Repg_(I') (so W =
Ck ®k., D). Let Op : D — D be the Sen operator.
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(1) Using scalar extension we get a Cg-linear endomorphism (©p)c, of W. In general
this is hard to describe (e.g., no analogue of (15.1.3), even over K. ). But show that
its kernel is WEx.

(2) Prove that if W is a direct sum of copies of Cx(¢") if and only if Op = r - idp.

(3) Using functorial properties of Dge, and ©p, deduce that W is a direct sum of copies
of Ck(¢")’s with various r; € Z if and only if ©p is semisimple with all eigenvalues
equal to integers. Taking 1) to be the p-adic cyclotomic character, this characterizes
when W is Hodge-Tate.

Erercise 15.5.5. For V' € Repq, (Gk), define D (V) = (Bgi ®q, V)9 € Dar(V). Prove
that this inclusion is an equality if V' has no Hodge-Tate weights > 0, and that in such cases
V' is de Rham if and only if the natural comparison map

B ®k Dar(V) — Biz ®q, V

is an isomorphism. (Beware that BJ; is not (Q,, Gy )-regular: the line Q,t is G k-stable and
¢ is not a unit in Bjg.)

Exercise 15.5.6. Here are some topological exercises, the first of which should give you more
appreciation for the other parts.

(1) Choose a compatible system {(,n},>0 of primitive p™th roots of unity, and let ¢ =
(¢n mod pOc, )nso € R. Observe that e'/P" = (Cpntm mod pOg,. )nso for all m > 0.
Let t = log[e] as usual.

Prove that in B,
[£'7") = Gom exp(t/p™)
for all m > 0, where exp has the usual meaning as on any complete discrete valuation
ring of residue characteristic 0. Also show that p™[e'/?""] — 0 in B, and by
expanding the exponential to order ¢* deduce that (mt — 0 in K [t]/t? K. [t] using
the subspace topology from L /t?L1;. Deduce that this subspace topology is not the
natural topology as a 2-dimensional vector space over the valued field K, and that
the subspace topology on the subfield of constants K, is not its valuation topology!

(2) Carry out the verification of Lemma 15.3.3.

(3) Prove that K[t] is a dense subring of L}, (thereby justifying that we view it as a
decompletion of L}).

Exercise 15.5.7. The following two useful assertions in commutative algebra were used in the
proof of Theorem 15.3.8.

(1) Let A — A’ be a faithfully flat map of commutative rings, and M an A-module. If
M' := A" ®4 M is finitely generated as an A’-module, prove that M is finitely gen-
erated as an A-module. (Hint: express M as the direct limit of its finitely generated
A-submodules.) Give a counterexample if faithful flatness is relaxed to flatness.

(2) Let A be a noetherian ring that is separated and complete for the topology defined
by an ideal I. (An important example is a complete local noetherian ring, with I the
maximal ideal.) Let A, = A/I"™ for n > 0, and let {M,} be an inverse system of
modules over the inverse system {4, } such that the natural map M, /"M, ., —
M, is an isomorphism for all n > 0. Prove that M = lim M, is a finitely generated
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A-module and that the natural map M/I"™'M — M, is an isomorphism for all n.
Feel free to restrict attention to the case when A is a discrete valuation ring with
maximal ideal I, as this is the case relevant to the proof of Theorem 15.3.8.

Ezercise 15.5.8. Let M be a finite free K. [t]-module, and let e = {ey,...,e,} be a basis.
Consider a general logarithmic connection V on M, so V(e;) = >, T¥e), ® dt for some
I'" € K((t) with at worst simple poles. These I'¥’s are called the Christoffel symbols of the
connection, and they depend on the basis e. (If we were working over a higher-dimensional
base with parameters {t;} then the formula would be V(e;) = >, I'¥e, ® dt;, but in our
present circumstances we only have ¢ = 1 and so drop it from the notation.)

(1

(2

[1]

) For fi,...., fn € Kx[t], compute a formula for V(> f;e;) in terms of the Christoffel
symbols, the f;’s, and the derivatives of the f;’s.

) Compute the formula for how the Christoffel symbols transform under a change of
basis on M. (It could get quite messy, and is never needed below, but is worth a try.)

16. OVERCONVERGENCE OF p-ADIC REPRESENTATIONS (TO BE ADDED IN!)
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